
Éloge de 'Mastering Bitcoin'

"Quand je parle de bitcoin au public, on me demande parfois 'mais comment
ça marche au fond ?' JÕai maintenant une très bonne réponse à cette question,
car quiconque lit Mastering Bitcoin aura une compréhension profonde de son
fonctionnement, et aura toutes les clés en main pour écrire la prochaine
génération dÕextraordinaires applications de cryptomonnaie.

Ñ Gavin Andresen, Chief Scientist de la Fondation Bitcoin

"Bitcoin et les technologies de blockchain deviennent des briques de base
fondamentales pour la prochaine génération dÕinternet. Les esprits les plus
brillants de la Silicon Valley travaillent dessus. Le livre dÕAndreas vous
permettra de prendre part à cette révolution du monde de la finance par le
logiciel."

Ñ Naval Ravikant, Co-fondateur d'AngelList

"Mastering Bitcoin est la meilleure référence technique aujourdÕhui disponible
sur bitcoin. Et bitcoin sera probablement vu rétrospectivement comme la
technologie la plus importante de cette décennie. CÕest pourquoi ce livre est un
must-have absolu pour tous les développeurs, en particulier ceux intéressé
pour bâtir des applications avec le protocole bitcoin. Hautement
recommandé."

Ñ Balaji S. Srinivasan (@balajis), General Partner&#x2c; Andreessen Horowitz

"LÕinvention de la Blockchain Bitcoin représente une plateforme entièrement
nouvelle, sur laquelle pourra se construire un écosystème aussi grand et varié
quÕinternet. Un des maîtres à penser de la communauté, Andreas
Antonopoulos est le meilleur auteur possible.

Ñ Roger Ver, Entrepreneur Bitcoin et Investisseur
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Préface

Un Livre sur Bitcoin
Je suis tombé pour la première fois sur bitcoin à la mi-2011. Ma réaction initiale a été quelque chose
comme "Pff ! De lÕargent pour geeks !", et je nÕy ai plus prêté attention pendant les six mois qui ont
suivi, faute dÕen avoir perçu lÕimportance. JÕai observé cette réaction chez plusieurs des personnes les
plus intelligentes que je connaisse, ce qui me réconforte quelque peu. La seconde fois que jÕai croisé la
route de bitcoin, au cours dÕune discussion sur une mailing list, jÕai décidé de lire le livre blanc de
Satoshi Nakamoto, afin dÕétudier la source de référence et de voir de quoi il en retournait. Je me
souviens encore de ce moment où, ayant achevé de lire les neuf pages, jÕai réalisé que bitcoin nÕétait
pas simplement une monnaie numérique, mais un réseau de confiance sur lequel pouvait se
construire beaucoup plus que des monnaies. Ayant pris conscience que "ce nÕest pas de lÕargent, mais
un réseau de confiance décentralisé", je me lançais dans un périple de quatre mois afin dÕengloutir
toutes les informations que je pouvais trouver sur bitcoin. JÕétais obsédé, subjugué, collé 12 heures ou
plus par jour à mon écran, lisant, écrivant, codant, et apprenant autant que je le pouvais. JÕémergeai de
cet état second avec 10 kilos de moins, faute de repas normaux, et décidé à me consacrer à travailler
sur bitcoin.

Deux ans plus tard, après avoir créé plusieurs petites startups visant à explorer différents produits et
services liés à bitcoin, jÕai décidé quÕil était temps dÕécrire mon premier livre. Bitcoin était le sujet qui
mÕavait conduit à une frénésie de créativité et qui avait enflammé mes réflexions ; cÕétait la
technologie la plus excitante que jÕavais rencontrée depuis Internet. Le temps était venu de partager
ma passion pour cette fantastique technologie, avec une audience plus large.

Public Visé
Ce livre est destiné principalement aux codeurs. Si vous savez utiliser un langage de programmation,
ce livre vous enseignera comment les monnaies cryptographiques fonctionnent, comment les utiliser,
et comment développer des logiciels qui sÕen servent. Les premiers chapitres peuvent aussi constituer
une introduction approfondie sur bitcoin pour les non-codeursÑceux qui essaient de comprendre les
mécanismes internes de bitcoin et des cryptomonnaies.

Les conventions utilisées dans ce Livre
Les conventions typographiques suivantes sont utilisées dans ce livre :

Italique

Indique les termes nouveaux, les URLs, adresses email, noms et extensions de fichiers.

Largeur constante

Est utilisée pour les extraits de programmes, ainsi quÕau sein des paragraphes afin dÕévoquer des
éléments de programmation tels quÕune variable, des noms de fonctions, des bases de données, des
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types de données, des variables dÕenvironnement, des déclarations ou des mots-clés.

Largeur constante en gras

Utilisée pour des commandes ou dÕautres textes qui peuvent être tapées telles quelles par un
utilisateur.

Largeur constante en italique

Utilisée pour les textes devant être remplacés par des valeurs fournies par les utilisateurs, ou par
des valeurs dépendant dÕun contexte.

TIP Cette icône indique une astuce, une suggestion ou une note générale

WARNING Cette icône indique une alerte ou un éventuel danger

Exemples de code
Les exemples fournis sont en Python, en C++, et utilisent des lignes commandes de type Unix pouvant
être utilisées sous linux ou Mac OSX. Tous les extraits de code sont disponibles dans le repository
Github, et sont accessibles en ligne sur Dépôt GitHub  dans le sous-répertoire code du dépôt principal.
Il est possible de créer de nouveaux embranchements, dÕessayer les exemples de code, ou de soumettre
des corrections via GitHub.

Tous les extraits de code peuvent être exécutés sur la plupart des systèmes dÕexploitation et requièrent
un minimum de composants installés pour la compilation et lÕinterprétations des langages utilisés.
Quand cela est nécessaire, nous fournissons des instructions basiques dÕinstallation des composants
utiles avec une description pas à pas de la démarche à suivre et du résultat attendu.

Certains extraits de code ont été formatés pour des raison dÕimpression. Dans ce cas, les lignes ont été
scindées par le caractère anti-slash (\), suivi dÕun caractère nouvelle ligne. Quand vous retranscrirez
ces exemples, supprimez ces deux caractères afin de ne former quÕune seule ligne à nouveau, et vous
devriez obtenir un résultat identique à celui montré dans lÕexemple.

Tous les exemples de code utilisent des valeurs et des calculs réels  quand cela est possible, afin que
vous puissiez obtenir les mêmes résultats dans le cas ou vous les exécutiez. Par exemple, les clés
privées et les clé publiques ainsi que les adresses correspondantes utilisées dans cet ouvrages sont
réelles. Les transactions données en exemple, les blocs et les références à la blockchain sont toutes
réelles. Les transactions données en exemple, les blocs et les références au blockchain sont réellement
présents dans la blockchain bitcoin en tant que parties intégrantes du registre public, afin que vous
puissiez les retrouver à partir de nÕimporte quel système bitcoin.

Remerciements de lÕauteur
Ce livre représente les efforts et la contribution de beaucoup de monde. Je suis reconnaissant de toute
lÕaide que jÕai pu recevoir de mes amis, mes collègues et même de parfaits étrangers qui mÕont rejoint
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dans cet effort de rédaction du livre ultime sur les crypto-monnaies et le bitcoin.

Il est impossible de séparer le bitcoin en tant que technologie et le bitcoin en tant que communauté, et
ce livre est autant le fruit de la communauté quÕil est un ouvrage sur la technologie. Mon travail sur ce
livre a été encouragé, accueilli, supporté et récompensé par la communauté Bitcoin toute entière, et ce
du début jusquÕà la fin. Plus que tout, ce livre mÕaura permis de faire partie de cette communauté
fantastique et je ne vous remercierai jamais assez de mÕavoir accepté au sein de cette communauté. Il y
a beaucoup trop de monde pour que je puisse les citer un par un Ð ceux que jÕai rencontré lors des
conférences, séminaires, meetups, autour dÕune pizza ou en petits comités privés, ceux avec qui jÕai
communiqué via twitter, sur reddit, sur bitcointalk.org et sur Github ont tous eu un impact sur ce livre.
Toute idée, analogie, question, réponse, et explication que vous trouverez dans cet ouvrage sont dÕune
manière ou dÕune autre inspirées, testées ou améliorées au travers de mes interactions avec la
communauté. Merci à vous tous pour votre soutien, sans vous ce livre nÕaurait jamais vu le jour. Je
vous serai à jamais reconnaissant.

Bien sûr, le chemin parcouru afin de devenir un auteur commence bien avant ce livre. Ma langue
maternelle est le Grec, jÕai donc dû prendre des cours dÕécriture en Anglais lors de ma première année
dÕuniversité. Je remercie pour cela Diana Kordas, mon professeur dÕanglais, qui mÕa aidé à prendre
confiance et élever mon niveau cette année-là. Plus tard, en tant que professionnel, jÕai développé mes
compétences techniques sur le sujet des centres de données, en écrivant pour le magazine Network
World. Je remercie John Dix et John Gallant qui mÕont donné mon premier poste dÕauteur en tant que
journaliste à Network World et à mon éditeur Michael Cooney et ma collègue Johna Till Johnson qui
ont publié mes articles. Le fait dÕavoir à écrire 500 mots par semaine pendant 4 ans mÕa donné assez
dÕexpérience pour envisager une carrière dÕauteur. Merci à Jean pour mÕavoir encouragé très tôt à
devenir auteur, et pour avoir toujours cru et insisté sur le fait que cela était fait pour moi.

Je voudrais également remercier ceux qui mÕont soutenu lorsque jÕai proposé mon livre à OÕReilly, en
donnant leur recommandation et relisant la proposition. Merci à John Gallant, Gregory Ness, Richard
Stiennon, Joel Snyder, Adam B. Levine, Sandra Gittlen, John Dix, Johna Till Johnson, Roger Ver et Jon
Matonis. Un remerciement particulier à Richard Kagan et Tymon Mattoszko qui ont relu les premiers
manuscrits et Matthew Owain Taylo qui les a révisés.

Merci à Cricket Liui, auteur du titre OÕReilly Ç DNS et BIND È qui mÕa introduit chez OÕReilly. Merci
aussi à Michael Loukides et Allyson MacDonald chez OÕReilly qui ont travaillé pendant des mois pour
que ce livre sorte. Allyson a été particulièrement patiente quand des retards sont apparus à cause des
incidents de la vie.

Les premieres versions des premiers chapitres ont été les plus dures, car le  bitcoin est un sujet difficile
à aborder. A chaque fois que je voulais aborder un sujet concernant la technologie du bitcoin, je me
retrouvais à devoir parler de la technologie dans son intégralité. Je suis resté longtemps bloqué et
découragé quand jÕessayais de transformer un sujet techniquement très dense en une histoire facile à
comprendre. JÕai finalement décidé de raconter lÕhistoire du bitcoin en me servant de scénarios de
personnes utilisant le bitcoin et le livre a tout dÕun coup été beaucoup plus simple à écrire. Je dois
remercier mon mentor et ami Richard Kagan, qui mÕa aidé à mÕen sortir pendant ces moments de
blocage, ainsi que Pmela Morgan qui a révisé les premières versions des premiers chapitres et mÕa
posé les bonnes questions pour mÕaider à les améliorer. JÕaimerais également remercier les
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développeurs du groupe Ç San Francisco Bitcoin Developers Meetup È et Taariq Lewis, son
cofondateur, pour mÕavoir aidé à tester les premiers bouts de code.

Pendant lÕécriture de cet ouvrage, jÕai rendu disponible mes premiers manuscrits sur Github et
encouragé les gens à commenter mon travail. Plus dÕune centaine de commentaires, suggestions,
corrections et contributions mÕont été soumises en réponse. Ces contributeurs sont cités dans la section
Première version du manuscrit (Contributions GitHub). JÕaimerais remercier particulièrement Minh T.
Nguyen qui sÕest porté volontaire pour gérer toutes ces contributions et qui a été lui-même un
contributeur actif. Merci aussi à Andrew Naugler pour ses illustrations.

Une fois que la première version du manuscrit était terminée, il a alors fallu effectuer plusieurs revues
techniques. Merci a Cricket Liu et Lorne Lantz pour leur revue complète, leurs commentaires et leur
aide précieuse.

Plusieurs développeurs bitcoin ont contribué aux exemples de code, revues,  commentaires et
encouragements. Merci à Amir Taaki pour ses exemples de code et ses nombreux commentaires;
Vitalik Buterin et Richard Kiss pour leur aide sur la courbe elliptique et leurs contributions au code;
Gavin Andresen pour ses corrections, commentaires et encouragements, Michalis Kargalis pour ses
commentaires, contributions et sa critique de btcd; et Robin Inge pour ses propositions dÕerrata qui ont
permis dÕaméliorer la seconde édition.

Je dois mon amour des mots et des livres à ma mère, Theresa, qui mÕa élevé dans une maison ou les
livres sÕalignaient sur chaque mur. Ma mère mÕa également acheté mon premier ordinateur en 1982,
bien quÕelle se décrive elle-même comme technophobe. Mon père, Menelaos, un ingénieur civil qui
vient juste de publier son premier livre à lÕâge de 80 ans, a été celui qui mÕa enseigné la pensée logique
et analytique et lÕamour de la science et de lÕingénierie.

Merci à vous tous pour mÕavoir encouragé tout au long de cette aventure.

Première version du manuscrit (Contributions GitHub)

Beaucoup de contributeurs ont proposés leurs commentaires, leurs correction et ajouts à la première
version GitHub. Merci à vous tous pour votre contribution à cet ouvrage. La liste qui suit contient les
éminents contributeurs avec leur identifiant GitHub entre parenthèses:

¥ Minh T. Nguyen, éditeur de contribution GitHub (enderminh)

¥ Ed Eykholt (edeykholt)

¥ Michalis Kargakis (kargakis)

¥ Erik Wahlström (erikwam)

¥ Richard Kiss (richardkiss)

¥ Eric Winchell (winchell)

¥ Sergej Kotliar (ziggamon)

¥ Nagaraj Hubli (nagarajhubli)
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¥ ethers

¥ Alex Waters (alexwaters)

¥ Mihail Russu (MihailRussu)

¥ Ish Ot Jr. (ishotjr)

¥ James Addison (jayaddison)

¥ Nekomata (nekomata-3)

¥ Simon de la Rouviere (simondlr)

¥ Chapman Shoop (belovachap)

¥ Holger Schinzel (schinzelh)

¥ effectsToCause (vericoin)

¥ Stephan Oeste (Emzy)

¥ Joe Bauers (joebauers)

¥ Jason Bisterfeldt (jbisterfeldt)

¥ Ed Leafe (EdLeafe)

Edition ouverte

Ceci est une édition libre de "Mastering Bitcoin", publié pour traduction sous licence Creative
Commons. Creative Commons Attribution Share-Alike License (CC-BY-SA). Cette licence vous autorise à
lire, partager, imprimer, vendre ou réutiliser ce livre, en totalité ou en partie si vous:

appliquez la même licence (Share-Alike) * Include attribution

Attribution
"Mastering Bitcoin" par Andreas M. Antonopoulos LLC https://bitcoinbook.info

Droits dÕauteur 2016, Andreas M. Antonopoulos LLC

Traduction

Si vous lisez ce livre dans une autre langue que lÕanglais, cÕest quÕil a été traduit par des volontaires.
Les personnes suivantes ont contribué à la traduction et lÕadaptation:

Fabien Robyr * Name 2 * Name 3
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Glossaire Succinct
Ce glossaire succinct contient de nombreux termes liés au bitcoin. Ces termes sont utilisés tout au long
du livre, il est donc conseillé de marquer cette page pour la retrouver facilement.

adresse

Une adresse bitcoin ressemble à 1DSrfJdB2AnWaFNgSbv3MZC2m74996JafV. Elle consiste en une
suite de chiffres et de lettres commençant par "1" (le chiffre un). De la même façon que vous
demandez à quelquÕun de vous envoyer un email à votre adresse email, vous pouvez lui demander
dÕenvoyer des bitcoins à votre adresse bitcoin.

bip

Bitcoin Improvement Proposals (en français : Propositions dÕAmélioration de Bitcoin). Un ensemble
de propositions que les membres de la communauté ont émises pour améliorer bitcoin. Par
exemple, BIP0021 est une proposition pour améliorer le schéma dÕURI spécifique à bitcoin.

bitcoin

Le nom de lÕunité de monnaie (la pièce), le réseau, et le logiciel.

block

Un groupe de transactions, avec un horodatage et lÕempreinte du bloc précédent. LÕentête de bloc est
hashé pour produire une preuve de travail, validant ainsi les transactions. Les blocs valides sont
ajoutés à la blockchain principale par consensus distribué.

blockchain

Une chaîne de bloc valides, chaque bloc étant relié à son prédécesseur jusquÕau premier bloc,
appelé le genesis bloc.

confirmations

Une fois quÕune transaction est incluse dans un bloc, elle a une confirmation. Dès quÕun autre bloc
est miné sur la même blockchain, la transaction a une deuxième confirmation, et ainsi de suite. Au
bout six confirmations ou plus, on considère que la transaction est irréversible.

difficulté

Un réglage de lÕensemble du réseau qui contrôle la quantité de calcul requise pour fournir une
preuve de travail.

difficulté cible

Une difficulté telle que le réseau pourra calculer un bloc toutes les 10 minutes environ.

reciblage de difficulté

Un recalcul de la difficulté appliquée à lÕensemble du réseau qui a lieu une fois tous les 2106
bloques en prenant en considération la puissance de hachage des 2106 bloques précédents.
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frais

Celui qui envoie la transaction inclut souvent une commission pour que le réseau traite la
transaction sollicitée. La plupart des transactions requièrent une commission minimum de 0,5
mBTC.

hash

LÕempreinte numérique de données binaire."hash")

bloc genesis

Le premier bloque de la chaîne de bloques, utilisé pour initialiser la crypto-monnaie.

mineur

Un noeud du réseau qui trouve une preuve de travail valide pour de nouveaux bloques, en
effectuant des hachages répétés.

réseau

Un réseau pair à pair qui propage les transactions et les bloques vers chaque noeud bitcoin du
réseau.

Preuve de Travail

Une donnée qui requiert un travail significatif pour être calculée. Dans le cadre de bitcoin, les
mineurs doivent trouver une solution numérique à lÕalgorithme SHA256, qui permet de remplir un
objectif défini pour lÕensemble du réseau, appelé la difficulté.

récompense

Une somme incluse dans chaque nouveau bloc comme récompense pour le mineur qui a trouvé la
solution de la Preuve de Travail. Elle sÕélève actuellement à 25BTC par bloc.

clé secrète (ou clé privée)

Le numéro secret qui débloque les bitcoins à envoyer à lÕadresse correspondante. Une clé secrète
ressemble à 5J76sF8L5jTtzE96r66Sf8cka9y44wdpJjMwCxR3tzLh3ibVPxh.

transaction

En termes simples, un transfert de bitcoins dÕune adresse à une autre. Plus précisément, une
transaction est une structure de données signée qui exprime une transfert de valeur. Les
transactions sont transmises sur le réseau bitcoin, collectées par les mineurs, et incluses dans des
bloques, de façon permanente dans la chaîne de bloques.

porte-monnaie

Logiciel qui contient toutes vos adresses bitcoin et clés privées. Utilisé pour envoyer, recevoir et
stocker vos bitcoins.
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Introduction

QuÕest ce que Bitcoin ?
Bitcoin est un ensemble de concepts et de technologies formant la base dÕun écosystème de monnaie
numérique. Les unités de monnaie appelées bitcoins sont utilisées pour conserver et transmettre de la
valeur parmi les participants du réseau bitcoin. Les utilisateurs de bitcoin communiquent entre eux en
utilisant le protocole bitcoin principalement via internet, bien que dÕautres réseaux de transport
puissent être utilisés. La pile du protocole bitcoin, disponible en tant que logiciel open source, peut être
exécutée sur une large gamme dÕordinateurs, y compris les ordinateurs portables ou les smartphones,
rendant cette technologie facilement accessible.

Les utilisateurs peuvent transférer des bitcoins sur le réseau pour faire tout ce qui peut se faire avec
des monnaies traditionnelles, acheter ou vendre des biens et services, envoyer de lÕargent à des
individus ou des organisations ou accorder des crédits. La technologie Bitcoin inclut des
fonctionnalités qui sont basées sur le cryptage et les signatures numériques afin de sÕassurer de la
sécurité du réseau bitcoin. Les bitcoins peuvent être achetés, vendus et échangés contre dÕautres
monnaies sur des échanges spécialisés. Le bitcoin est dans un sens la forme de monnaie parfaite pour
internet puisquÕelle est rapide, sûre et sans frontières.

Contrairement aux monnaies classiques, les bitcoins sont entièrement virtuels. Il nÕexiste pas de pièce
physique ou même de pièce numérique. Les pièces sont inclues dans les transactions transmettant de
la valeur de lÕémetteur au destinataire. Les utilisateurs de bitcoin possèdent des clés qui prouvent la
possession des transactions sur le réseau bitcoin et déverrouillent la valeur pour la dépenser et la
transférer à un autre destinataire. Ces clés sont souvent enregistrées dans un portefeuille numérique
présent sur lÕordinateur de chaque utilisateur. La possession dÕune clé pour déverrouiller une
transaction est lÕunique pré-requis pour dépenser des bitcoins, ce système donne ainsi entièrement le
contrôle aux utilisateurs.

Bitcoin est un système pair-à-pair entièrement distribué. Ainsi, il nÕy a aucun serveur ou point de
contrôle Ç central È.  Les bitcoins sont créés au travers dÕun processus appelé Ç minage È, qui implique
de trouver la solution à un problème difficile à résoudre. NÕimporte quel participant au réseau bitcoin
(cÕest à dire, nÕimporte quel ordinateur opérant la pile complète bitcoin) peut agir en tant que mineur,
en utilisant la puissance de calcul quÕil a à sa disposition afin de résoudre le problème. Toutes les 10
minutes en moyenne, une nouvelle solution est trouvée par quelquÕun qui est alors capable de valider
les transactions des dernières 10 minutes. En résumé, le minage bitcoin décentralise lÕémission de
monnaie et les procédures de rapprochement rendant inutile lÕintervention dÕun organisme similaire
aux banques centrales.

Le protocole bitcoin inclut des algorithmes prédéfinis qui régulent la fonction de minage sur le réseau.
La difficulté de lÕexécution de la tâche effectuée par les mineurs Ðafin dÕenregistrer un bloc de
transaction sur le réseau bitcoinÐ est ajustée de façon à ce quÕen moyenne quelquÕun y arrive toutes les
10 minutes, peu importe le nombre de mineurs (et de CPUs) travaillant sur cette tâche à un instant t. Le
protocole divise de moitié la quantité de bitcoins créées tous les quatre ans et limite le nombre total de
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bitcoins émis à un total de 21 millions de pièces. Par conséquent, le nombre total de bitcoins en
circulation suit une courbe aisément prévisible qui atteindra 21 millions dÕunités vers lÕannée 2140. Vu
sa vitesse dÕémission allant en diminuant, sur le long terme, la monnaie bitcoin est déflationniste.
Enfin, le bitcoin ne peut pas être gonflé artificiellement en générant de la monnaie au-delà du taux
dÕémission attendu.

Bitcoin est aussi le nom dÕun protocole, dÕun réseau, et dÕune innovation dans lÕinformatique
distribuée.  Le bitcoin en tant que monnaie nÕest vraiment que la première application de cette
invention. En tant que développeur, je vois un peu le bitcoin comme lÕInternet de lÕargent, un réseau
chargé de propager de la valeur et de sécuriser la possession de biens numériques via des calculs
distribués. Le bitcoin est beaucoup plus que ce quÕil semble être à première vue.

Dans ce chapitre nous commencerons par expliquer les concepts et termes principaux, nous
installerons les logiciels nécessaires, et utiliserons le bitcoin pour des transactions simples. Dans les
chapitres suivants, nous analyserons toutes les couches technologiques qui rendent bitcoin possible et
nous examinerons le fonctionnement interne du réseau et du protocole bitcoin.

Les monnaies numériques avant le Bitcoin

LÕémergence de monnaies numériques viables est étroitement liée au développement de la
cryptographie. Ce nÕest guère surprenant lorsque lÕon considère le challenge fondamental de
lÕutilisation de bits pour représenter de la valeur pouvant être échangée pour des biens et des
services. Les deux premières questions que se posent ceux qui acceptent de la monnaie
numérique sont :

1. Comment puis-je mÕassurer que la monnaie est authentique et non une contrefaçon ?

2. Comment être sûr que personne dÕautre ne peut revendiquer la propriété de cette monnaie à
ma place (le fameux problème de la double dépense)

Les émetteurs de papier-monnaie livrent un combat sans fin contre la contrefaçon en utilisant
des papiers et des techniques dÕimpression de plus en plus sophistiqués. La monnaie physique
résout simplement le problème de la double dépense car un même billet ne peut se trouver à
deux endroits en même temps. Cependant, la monnaie conventionnelle peut se transmettre de
façon numérique. Dans ce cas, les problèmes de contrefaçon et de double dépense sont adressés
par la vérification de toutes les transactions électroniques au travers dÕautorités centrales qui
possèdent une vision globale de la monnaie en circulation. Pour ce qui est des monnaies
numériques qui ne peuvent profiter de lÕutilisation dÕencres particulières ou de bandes
holographiques, la cryptographie fournit les bases de la confiance en la légitimité de la
revendication de valeur dÕun utilisateur. Plus spécifiquement, les signatures cryptographiques
électroniques permettent à un utilisateur de signer un bien numérique ou une transaction
prouvant la possession de ce bien. Avec lÕarchitecture appropriée, les signatures numériques
peuvent également être utilisées pour résoudre le problème de la double dépense.

Quand la cryptographie a commencé à devenir plus largement disponible et comprise vers la fin
des années 1980, beaucoup de chercheurs ont commencé a essayer dÕutiliser la cryptographie
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pour construire des monnaies numériques. Ces tous premiers projets ont donné le jour à des
monnaies numériques généralement adossées à des monnaies nationales ou des métaux
précieux tels que lÕor.

Malgré le fait que ces monnaies numériques fonctionnaient, elles étaient centralisées et au final
elle étaient faciles à attaquer par les gouvernements et les hackers. Les premières monnaies
numériques utilisaient un organisme de ÒclearingÓ afin de vérifier toutes les transactions à
intervalles réguliers, comme le fait le système bancaire traditionnel. Malheureusement, dans la
plupart des cas ces monnaies numériques naissantes ont été ciblées par des gouvernements
inquiets qui les ont réduites à néant avec lÕarme législative. Certaines ont échoué de façon
spectaculaire quand leur société mère a brutalement disparu. Afin de résister face à
lÕintervention de différents protagonistes, que ce soit des gouvernement légitimes ou des entités
criminelles, une monnaie numérique décentralisée était nécessaire afin dÕéviter un unique point
dÕattaque. Bitcoin est construit de la sorte, une monnaie numérique complètement décentralisée
dans sa conception et dénuée dÕune autorité centrale ou point de contrôle pouvant être attaqué
ou corrompu.

Bitcoin représente le point culminant des dizaines dÕannées de recherche en cryptographie et en
systèmes distribués et inclut quatre innovations clés dans une combinaison unique et puissante.
Bitcoin consiste en:

¥ Un réseau décentralisé pair-à-pair (le protocole bitcoin)

¥ Un registre public de transaction (la blockchain)

¥ Un système dÕémission de monnaie décentralisé mathématique et déterministe (le minage
distribué)

¥ Un système décentralisé de vérification des transactions (les scripts de transaction)

Historique du Bitcoin
Bitcoin a été inventé en 2008 avec la publication dÕun document intitulé Ç Bitcoin : Un système de cash
électronique peer-to-peer È écrit sous le pseudonyme de Satoshi Nakamoto. Nakamoto a combiné
plusieurs inventions précédentes telles que b-money et Hashcash afin de créer un système de cash
électronique complètement décentralisé ne reposant sur aucune autorité centrale pour lÕémission de
monnaie ou le règlement et la validation des transactions. LÕinnovation principale a été dÕutiliser un
système de calcul distribué (appelé algorithme Ç proof-of-work È) réalisant une Ç élection È globale
toutes les 10 minutes, permettant au réseau décentralisé dÕarriver à un consensus sur lÕétat des
transactions. Cela résout de façon élégante le problème de la double dépense ou une unité de monnaie
ne peut être dépensée deux fois. Précédemment, le problème de double dépense était une faiblesse des
monnaies numériques et était résolu en réalisant la vérification de toutes les transactions par un
organisme de ÒclearingÓ.

Le réseau bitcoin a commencé en 2009, basé sur une implémentation de référence publié par
Nakamoto et révisée depuis par beaucoup dÕautres programmeurs. Le calcul distribué qui fournit la
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sécurité et la résistance au bitcoin a crû de façon exponentielle pour aujourdÕhui surpasser la
puissance de calcul des plus puissants super-calculateurs de ce monde. La totalité du marché Bitcoin
est aujourdÕhui estimée entre 5 et 10 milliards de dollars, en fonction du cours dÕéchange. La plus
grosse transaction opérée à ce jour  a été de 150 millions de dollars, transmise instantanément et
opérée sans aucun frais.

Satoshi Nakamoto a cessé toute intervention publique en Avril 2011, laissant la responsabilité du
développement du code et du réseau à un solide groupe de volontaires. LÕidentité de la personne ou du
groupe de personnes derrière la création de Bitcoin reste à ce jour inconnue. Cependant, ni Satoshi
Nakamoto ni personne nÕexercent un quelque contrôle sur le système bitcoin, qui nÕopère que selon
des principes mathématiques totalement transparents. LÕinvention en elle-même est révolutionnaire et
a déjà apporté beaucoup dans les domaines de du calcul distribué, de lÕéconomie et de lÕéconométrie.

Une solution à un problème de calcul distribué

LÕinvention de Satoshi Nakamoto est également une solution concrète à un problème jusquÕalors
insoluble en calcul distribué, connu sous le nom du ÇProblème des généraux Byzantins È. Pour
expliquer rapidement, ce problème consiste à essayer de se mettre dÕaccord sur les actions à
mener en échangeant de lÕinformation sur un réseau non fiable et possiblement compromis. La
solution de Satoshi Nakamoto, qui utilise le concept de proof-of-work afin dÕarriver à un
consensus sans lÕaide dÕune autorité centrale, représente une percée dans la science du calcul
distribué et possède un champ dÕapplication au-delà de la monnaie. Elle peut être utilisée pour
arriver à un consensus au sein de réseaux décentralisés afin de prouver la légitimité dÕélections,
les loteries, les registres de biens, la notarisation électronique et bien dÕautres choses encore.

Les usages du bitcoin, ses utilisateurs et leurs scénarios
Bitcoin est une technologie, mais elle sÕapplique à lÕargent qui est le langage fondamental pour
échanger de la valeur entre les gens. Jetons un Ïil aux personnes qui utilisent le bitcoin et à certains
des usages les plus communs de la monnaie et du protocole au travers de leurs histoires. Nous
réutiliserons ces cas pratiques tout au long de lÕouvrage afin dÕillustrer des usages dans un contexte
réel de la vie de tous les jours et comment ils ont été rendus possible par les différentes technologies
constitutives du bitcoin.

La vente de biens de faible valeur en Amérique du nord Alice vit dans le nord de la Californie. Elle a
entendu parler du bitcoin par ses amis informaticiens et veut commencer à lÕutiliser. Nous suivrons
son histoire, de son apprentissage de ce quÕest le bitcoin, son achat de bitcoins jusquÕà son utilisation
de bitcoins pour acheter un café au BobÕs Cafe à Palo Alto. Cette histoire va nous faire découvrir les
logiciels, les échanges et les transactions basiques du point de vue dÕun consommateur lambda.

La vente de biens de forte valeur en Amérique du nord Carol est une galeriste de San Francisco. Elle
vend des Ïuvres dÕart ayant un prix élevé contre des bitcoins. Ce scénario nous permettra dÕaborder
les risques dÕune attaque concertée des Ç 51% È pour les vendeurs de biens à forte valeur.
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Les contrats de service offshore Bob, le propriétaire du café de Palo Alto, est en train de réaliser son
nouveau site web. Pour ce faire, il a passé un contrat avec un développeur web indien, Gopesh, qui vit
à Bangalore en Inde. Gopesh a accepté dÕêtre payé en bitcoins. Ce scénario démontrera lÕusage du
bitcoin pour lÕoutsourcing, les contrats de services et les transferts internationaux.

Les dons de bienfaisance Eugenia est la directrice dÕune organisation de bienfaisance aux Philippines.
Elle a récemment découvert le bitcoin et souhaite lÕutiliser afin de toucher de nouvelles personnes sur
place et à lÕétranger pour lever des fonds pour son organisation. Elle recherche également des moyens
dÕutiliser le bitcoin afin de distribuer rapidement des fonds pour les zones dans le besoin. Ce scénario
nous montrera lÕutilisation du bitcoin pour la levée de fonds à lÕinternational et lÕutilisation du registre
public pour les organisations de bienfaisance.

LÕImport/export

Mohammed est un importateur de biens électroniques à Dubaï. Il essaye dÕutiliser le bitcoin pour
acheter du matériel électronique aux Etats-Unis et en Chine et lÕimporter aux Emirat arabes unis
afin dÕaccélérer les processus de paiement pour lÕimport. Cette histoire nous montrera comment le
bitcoin peut être utilisé pour des paiements B2B internationaux pour lÕachat de biens physiques.

Le minage de bitcoin Jing est un étudiant en ingénierie informatique à Shanghai. Il a construit une
plateforme de minage afin de miner des bitcoins : utilisant ses connaissances en informatique pour
obtenir un revenu complémentaire. Cette histoire nous permettra de découvrir lÕaspect Ç industriel È
du bitcoin : lÕéquipement spécialisé utilisé pour sécuriser le réseau bitcoin et émettre de la monnaie.

Chacun de ces scénarios est basé sur de véritables personnes et de véritables industries qui utilisent le
bitcoin pour créer de nouveaux marchés, de nouvelles industries, et des solutions innovantes pour
résoudre des problèmes économiques globaux.

Comment débuter
Afin de rejoindre le réseau bitcoin et commencer à utiliser cette monnaie, tout ce quÕun utilisateur a à
faire est de télécharger une application ou dÕutiliser une application web. Parce que Bitcoin est un
standard, il y a beaucoup dÕimplémentations différentes de clients bitcoin. Il existe également une
implémentation de référence, également connue sous le nom de client Satoshi, qui est géré comme un
projet open source par une équipe de développeurs et qui découle de lÕimplémentation originelle
écrite par Satoshi Nakamoto.

Il existe trois types de clients bitcoin :

Le client lourd

Un client lourd ou Ç nÏud complet È (full node), est un client qui enregistre lÕhistorique complet des
transactions bitcoins (toutes les transactions de tous les utilisateurs et de tout temps), gère les
portefeuilles de lÕutilisateur et peut initier les transactions directement sur le réseau bitcoin. Il est
similaire à un serveur autonome de courrier électronique dans le sens où il gère tous les aspects du
protocole sans reposer sur aucun autre serveur ou service tiers.
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Le client léger

Un client léger contient le portefeuille de lÕutilisateur mais dépend de serveurs tiers pour lÕaccès aux
transactions et au réseau bitcoin. Le client léger nÕenregistre pas une copie complète de toutes les
transactions et par conséquent doit faire confiance aux serveurs tiers pour la validation des
transactions. Il est similaire à un client de messagerie qui se connecte à un serveur de courrier
électronique pour accéder à sa boite aux lettres dans le sens ou il se repose sur un serveur tiers
pour réaliser des interactions avec le réseau.

Le client web

Les clients web sont accessibles depuis un navigateur et enregistrent les portefeuilles des
utilisateurs sur un serveur que possède une société tierce. Ils sont similaires à un client de
messagerie en ligne qui repose entièrement sur un serveur tiers.

Bitcoin sur mobile

Les clients mobiles pour smartphones, tels que ceux fonctionnant sur Android, peuvent opérer
soit comme des clients complets, des clients légers, ou des clients web. Certains clients mobiles
sont synchronisés avec un client web ou un client lourd et fournissent un portefeuille
multiplateforme utilisable sur plusieurs terminaux mais avec une source commune de fonds.

Le choix dÕun client bitcoin dépend du contrôle que souhaite exercer lÕutilisateur sur ses fonds. Un
client lourd offrira le plus haut niveau de contrôle et dÕindépendance pour lÕutilisateur, mais déportera
la responsabilité des sauvegardes et la sécurité sur ce dernier. A lÕautre bout de lÕéventail de choix, le
client web est le plus facile à configurer et à utiliser mais en contrepartie la sécurité et le contrôle sont
partagés entre lÕutilisateur et la société possédant le service web et cela introduit un risque
supplémentaire. Si le service web est compromis, comme beaucoup lÕont été, les utilisateurs perdent
tous leurs fonds. DÕun autre côté, si les utilisateurs possèdent un client lourd mais nÕeffectuent pas les
sauvegardes nécessaires, ils peuvent perdre leurs fonds suite à un crash de leur ordinateur.

Dans cet ouvrage, nous montrerons lÕusage de client variés, depuis le client de référence (le client
Satoshi) jusquÕau client web. Certains exemples demanderont lÕutilisation du client de référence qui en
plus dÕêtre un client lourd, propose des APIs vers le portefeuille, le réseau, et les services
transactionnels. Si vous prévoyez dÕexplorer les interfaces de programmation du bitcoin, vous aurez
besoin du client de référence.

Démarrage rapide

Alice, que nous avons présenté dans Les usages du bitcoin, ses utilisateurs et leurs scénarios, nÕest pas
une utilisatrice à fort bagage technique et nÕa que très récemment entendu parler du bitcoin par un
ami. Elle commence son aventure en visitant le site officiel bitcoin.org, où elle peut trouver une large
sélection de clients bitcoin. Suivant le conseil du site bitcoin.org, elle opte pour le client léger Multibit.

Alice suit le lien fourni par bitcoin.org pour télécharger et installer Multibit sur son ordinateur.
Multibit est disponible pour les systèmes dÕexploitation Windows, Mac OS, et Linux.
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WARNING

Un portefeuille bitcoin se doit dÕêtre protégé par un mot de passe ou une Ç phrase È
de passe. Il existe beaucoup dÕacteurs malveillants qui essayent de casser les mots
de passe faibles, prenez donc garde en choisissant un mot de passe qui ne peut
être facilement craqué. Utilisez une combinaison de lettres minuscules et
majuscules, nombres et symboles. Évitez les informations personnelles telles que
les dates de naissance les noms ou votre équipe de sport favorite. Évitez tous les
mots trouvables dans le dictionnaire, et ce dans nÕimporte quelle langue. Si vous le
pouvez, utilisez un générateur de mot de passe pour créer un mot de passe
complètement aléatoire dÕune longueur dÕau moins 12 caractères. Rappelez-vous
de cela : bitcoin représente de lÕargent et peut être instantanément déplacé
nÕimporte où dans le monde. Si vos bitcoins ne sont pas assez protégés, ils peuvent
être facilement volés.

Une fois quÕAlice a téléchargé et installé lÕapplication Multibit, elle la lance et un écran dÕaccueil
sÕaffiche comme montré sur LÕécran dÕaccueil du client bitcoin Multibit.

Figure 1. LÕécran dÕaccueil du client bitcoin Multibit

Multibit créée automatiquement un portefeuille et une nouvelle adresse bitcoin pour Alice, adresse
quÕAlice peut voir en cliquant sur lÕonglet Requête comme montré sur La nouvelle adresse bitcoin
dÕAlice dans lÕonglet Requête du client Multibit.
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Figure 2. La nouvelle adresse bitcoin dÕAlice dans lÕonglet Requête du client Multibit

La partie la plus importante de cet écran est lÕadresse bitcoin dÕAlice. Comme une adresse email, Alice
peut partager cette adresse et nÕimporte qui peut lÕutiliser pour envoyer de lÕargent directement sur
son nouveau portefeuille. Sur lÕécran on peut voir une longue chaine de caractères composée de
chiffres et de lettres 1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK. A coté de cette adresse bitcoin, il y a
un code QR, une forme de code barre qui contient la même information dans un format pouvant être
scanné par une caméra de smartphone. Le code QR est lÕimage carrée en noir et blanc sur le coté droit
de la fenêtre. Alice peut copier lÕadresse bitcoin ou le code QR dans son presse-papier en cliquant sur
les boutons situés à coté de chacun dÕeux. Cliquer sur le code QR lÕagrandira, ce qui facilitera son scan
par une camera de smartphone.

Alice peut aussi imprimer le code QR afin de pouvoir facilement donner son adresse à dÕautres
personnes sans avoir à taper la longue chaîne de caractère de son adresse.

TIP

Les adresses bitcoin commencent par le chiffre 1 ou 3. Comme les adresse email, elles
peuvent être partagées à dÕautres utilisateurs de bitcoin qui peuvent les utiliser pour
envoyer des bitcoins directement vers votre portefeuille. Contrairement aux adresse
email, vous avez la possibilité de créer de nouvelles adresses aussi souvent que vous le
souhaitez, et toutes ces adresses dirigeront les fonds vers votre portefeuille. Un
portefeuille est simplement une collection dÕadresses et de clés permettant de débloquer
les fonds qui y sont contenus. Vous pouvez augmenter votre anonymat en utilisant une
nouvelle adresse pour chacune de vos transactions. Il nÕy a pratiquement aucune limite
au nombre dÕadresses quÕun utilisateur peut créer.

Alice est maintenant prête à utiliser son nouveau portefeuille bitcoin.

Obtenir vos premiers bitcoins

Il nÕest pas possible dÕacheter des bitcoin à la banque ou dans un kiosque à devises pour le moment. En
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2014, il est toujours assez difficile dÕacquérir des bitcoins dans la plupart des pays. Il existe plusieurs
échangeurs de devises spécialisés où vous pouvez acheter et vendre des bitcoins en échanges dÕune
devise locale. Voici des échanges opérant en ligne actuellement :

Bitstamp

Un échangeur de devises qui accepte plusieurs monnaies dont lÕeuro (EUR) et les dollars US (USD)
par virement bancaire.

Coinbase

Un portefeuille bitcoin et une plateforme basée aux Etats-Unis où les marchands et les
consommateurs peuvent effectuer des transactions en bitcoins. Coinbase facilite lÕachat et la vente
de bitcoins, en permettant aux utilisateurs dÕy lier leurs comptes en banque américains via le
système ACH.

Les échangeurs de crypto-monnaies de la sorte opèrent à lÕintersection des devises nationales et des
crypto-monnaies. Et de ce fait, ils sont sujets aux législation nationales et internationales, et sont
souvent limités à un seul pays ou zone économique en se spécialisant dans les devises nationales
concernées. Votre choix dÕun échangeur de monnaie sera spécifique à la devise que vous utilisez et
limité aux échangeurs opérant au sein de la juridiction de votre pays ou zone économique. Comme
lÕouverture dÕun compte en banque, cela prend plusieurs jours voire semaines pour mettre en place les
comptes nécessaires pour utiliser ces services car ils requièrent plusieurs preuve dÕidentité pour se
conformer((("KYC (Know Your Customer) aux politiques  bancaires de KYC (connaître votre client, Ç
know your customer È an anglais) et AML ( anti-blanchiment, Ç anti money laundering È en anglais).
Une fois que vous obtenez un compte sur un échangeur bitcoin, vous pouvez acheter et vendre des
bitcoins rapidement exactement comme vous lÕauriez fait en utilisant un compte de courtage de
devises étrangères.

Vous pouvez trouvez une liste plus complète sur bitcoin charts, un site qui renseigne sur le cours du
bitcoin et dÕautres données concernant les marchés dÕune multitude dÕéchangeurs de devises.

Il existe quatre autres méthodes afin dÕobtenir des bitcoins pour un nouvel utilisateur :

¥Trouver un ami qui possède des bitcoins et lui proposer dÕen acheter directement. Beaucoup
dÕutilisateurs de bitcoin commencent de cette façon ¥ Utiliser un service tel que localbitcoins.com pour
trouver un vendeur dans votre zone géographique afin de lui acheter des bitcoins contre du cash en
réalisant la transaction en personne. ¥ Vendre un produit ou un service contre des bitcoins. Si vous être
un développeur, vendez vos compétences informatique. ¥ Utiliser un distributeur automatique de
bitcoin dans votre ville. Vous pouvez trouver un distributeur de bitcoin automatique près de chez vous
en utilisant la carte en ligne de CoinDesk.

Alice à découvert le bitcoin par un ami et donc avait un moyen simple de sÕen procurer en attendant
lÕactivation et la validation de son compte sur un échangeur californien.

Envoyer et Recevoir des Bitcoins

Alice a créé son portefeuille bitcoin et est maintenant prête à recevoir des fonds. Son application de
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portefeuille a généré de façon aléatoire une clé privée (décrite en détail dans [private_keys]) ainsi
quÕune adresse bitcoin correspondante. Ë ce stade, son adresse bitcoin nÕest pas connue du réseau
bitcoin et nÕest Ç enregistrée È nulle part dans le système bitcoin. Son adresse bitcoin est simplement
un nombre correspondant à une clé quÕelle peut utiliser pour contrôler lÕaccès à ses fonds. Il nÕy a pas
de compte ou dÕassociation entre cette adresse et un compte. Tant que cette adresse nÕest pas
référencée comme destinataire de valeur dans une transaction envoyée sur le registre bitcoin (la
blockchain), elle nÕest quÕune adresse parmi toutes les adresses valides possibles de bitcoin. Une fois
associée à un transaction, elle fait partie des adresses connues sur le réseau et Alice peut alors
consulter son solde sur le registre public.

Alice rencontre son ami Joe, qui lui a fait découvrir le bitcoin, dans un restaurant du coin afin quÕils
puissent échanger des dollars US et mettre quelques bitcoins sur son compte. Elle a besoin dÕapporter
une impression de son adresse et du code QR comme affiché dans son portefeuille bitcoin. Cette
adresse ne représente rien de sensible, du point de vue de la sécurité. Elle peut être affichée nÕimporte
où sans mettre la sécurité de son compte en danger.

Alice veut juste convertir 10 dollars US en bitcoins car elle ne souhaite pas risquer un montant trop
élevé dÕargent dans une nouvelle technologie. Elle donne donc à Joe un billet de $10 et son adresse
imprimée afin que Joe lui envoie lÕéquivalent en bitcoins.

Ensuite, Joe doit calculer le taux dÕéchange actuel afin de donner le montant correct de bitcoins à Alice.
Il existe des centaines dÕapplications et de sites web permettant de consulter le taux dÕéchange en
temps réel. Voici les plus populaires :

Bitcoin Charts

Un service de listing de données de marché qui montre le taux du bitcoin sur plusieurs échangeurs
du monde entier, exprimé dans de multiples devises

Bitcoin Average

Un site web qui fournit une vue simple du taux moyen pondéré par le volume pour chaque devise.

ZeroBlock

Une application gratuite sous Android et iOS qui affiche le prix du bitcoin sur différents échangeurs
(voir ZeroBlock, une application pour obtenir le taux du bitcoin pour Android et iOS)

Bitcoin Wisdom

Un autre service de listing de données de marché en temps réel.
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Figure 3. ZeroBlock, une application pour obtenir le taux du bitcoin pour Android et iOS

En utilisant une de ces applications ou sites web, Joe en conclut que le prix du bitcoin correspond à
approximativement 100 dollars US pour un bitcoin. A ce taux il doit donc donner à Alice 0.10 bitcoin,
ou 100 millibits  en échange des 10 dollars US quÕelle lui a donné.

Une fois que Joe a trouvé le juste taux dÕéchange, il ouvre un client mobile bitcoin et sélectionne
lÕaction Ç Envoyer È des bitcoins. Par exemple, si il utilisait le client mobile Blockchain sur un
téléphone Android, il verrait un écran avec deux champs comme montré dans LÕécran dÕenvoi de
bitcoin de lÕapplication du portefeuille mobile Blockchain.

¥ LÕadresse bitcoin de destination pour la transaction

¥ Le montant de bitcoin à envoyer

A coté du champ correspondant à lÕadresse bitcoin, il y a une petite icône ressemblant à un code QR.
Elle permet a Joe de scanner le code QR à lÕaide de la caméra de son smartphone afin de ne pas avoir à
taper à la main lÕadresse bitcoin dÕAlice (1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK), qui est plutôt
longue et difficile à taper sans faire dÕerreur.  Joe tapote donc sur lÕicône QR code et active la caméra de
son smartphone pour enfin scanner le portefeuille imprimé quÕAlice a apporté avec elle. LÕapplication
de portefeuille mobile remplit le champ correspondant à lÕadresse bitcoin et Joe peut vérifier que
lÕadresse a été scannée correctement en comparant quelques caractères de lÕadresse avec lÕadresse
imprimée par Alice.

Figure 4. LÕécran dÕenvoi de bitcoin de lÕapplication du portefeuille mobile Blockchain
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Joe rentre ensuite le montant de bitcoin pour la transaction soit 0.10 bitcoins. Il vérifie bien ce montant
afin dÕêtre sûr de rentrer le montant correct, tout simplement parce quÕil est sur le point de
transmettre de lÕargent et que la moindre erreur pourrait sÕavérer coûteuse. Pour finir, il clique sur
Envoyer pour transmettre la transaction. LÕapplication de portefeuille mobile de Joe construit une
transaction qui attribue 0.10 à lÕadresse bitcoin fournie par Alice, déplaçant les fonds contenus dans le
portefeuille de Joe et signant la transaction à lÕaide de la clé privée de Joe. Cela signale au réseau
bitcoin que Joe a autorisé le transfert de valeur depuis une de ses adresses vers la nouvelle adresse
dÕAlice. Pendant la transmission de la transaction via le protocole peer-to-peer, elle se propage
rapidement sur le réseau bitcoin. En moins dÕune seconde, la plupart des nÏuds les mieux connectés
du réseau reçoivent la transaction et voient lÕadresse dÕAlice pour la première fois.

Si Alice a un smartphone ou un ordinateur portable avec elle, elle sera aussi capable de voir cette
transaction. Le registre bitcoinÑun fichier sans cesse grandissant dans lequel sont enregistrées toutes
les transactions passéesÑest public, ce qui veut dire que tout ce quÕelle a à faire est de chercher sa
propre adresse et voir si des fonds y ont été envoyés. Elle peut faire cela facilement sur le site web
blockchain.info en entrant son adresse dans le champ de recherche. Le site web lui fournira alors une
page un listing de toutes les transactions de cette adresse. Si Alice consulte cette page, elle sera mise à
jour pour afficher la transaction transférant 0.10 bitcoins vers son compte peu de temps après que Joe
les ait envoyé.

Confirmations

Au début, lÕadresse dÕAlice affichera la transaction provenant de Joe comme Ç Non confirmée È.
Cela veut dire que la transaction à été propagée sur le réseau mais quÕelle nÕa pas encore été
incluse dans le registre de transaction bitcoin, également appelé la blockchain. Afin dÕy être
intégrée, la transaction doit être prise en charge par un mineur afin dÕêtre incluse dans un bloc
de transactions. Une fois le nouveau bloc de transactions créé, au bout de 10 minutes à peu près,
les transactions au sein de ce bloc seront acceptées en tant que Ç confirmées È sur le réseau et
pourront alors être dépensées. Cette transaction est vue de tous instantanément, mais nÕest
réellement reconnue comme valide par tous une fois incluse dans un nouveau bloc miné.

Alice est maintenant lÕheureuse propriétaire de 0.10 bitcoins quÕelle peut désormais dépenser. Dans le
chapitre suivant nous décrirons son premier achat en bitcoins, et nous analyserons la transaction sous-
jacente et les techniques de propagation en détail.
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Fonctionnement de Bitcoin

Transaction, Blocs, Minage, et la Blockchain
Le système bitcoin, contrairement aux systèmes bancaires et de paiement traditionnels, est basé sur
une confiance décentralisée. Ë la place dÕune autorité centrale, avec bitcoin, la confiance est une
résultante des interactions des différents participants dans le système bitcoin. Dans ce chapitre, nous
allons faire un examen haut-niveau de bitcoin en suivant une transaction à travers le système, et
constater comment elle devient acceptée par le mécanisme de consensus distribué et finalement
enregistrée dans la blockchain, le livre de compte distribué de toutes les transactions.

Chaque exemple est basé sur une transaction réelle ayant eu lieu sur le réseau bitcoin, simulant les
interactions entre les utilisateurs (Joe, Alice et Bob) par lÕenvoi de fonds dÕun portefeuille à un autre.
Tout en suivant une transaction à travers le réseau bitcoin, nous utiliserons un  explorateur de
blockchain pour visualiser chaque étape. Un explorateur de blockchain est une application web qui se
comporte comme un moteur de recherche pour bitcoin, en permettant de chercher des adresses,
transactions et blocs et dÕobserver les relations et flux entre eux.

Les explorateurs de blockchain les plus connus sont :

¥ Blockchain info

¥ Bitcoin Block Explorer

¥ insight

¥ blockr Block Reader

Chacun dÕeux a une fonction de recherche qui peut prendre en paramètre une adresse, un hash de
transaction, ou un numéro de bloc et trouver les données correspondantes sur le réseau Bitcoin et la
blockchain. Avec chaque exemple, nous allons fournir une URL qui vous emmène directement à la
page correspondante, afin que vous puissiez lÕétudier en détail.

Aperçu de Bitcoin

Dans le schéma dÕensemble décrit dans Bitcoin overview, on voit que le système de Bitcoin est
constitué dÕutilisateurs avec des portefeuilles contenant des clés, de transactions qui se propagent à
travers le réseau, et de mineurs qui produisent (par calcul concurrentiel) le consensus de la chaîne de
bloques, qui est le grand livre de compte faisant autorité de toutes les transactions. Dans ce chapitre,
nous allons suivre une seule transaction, comment elle se déplace à travers le réseau et allons
examiner les interactions entre chaque partie du système Bitcoin, à un niveau élevé. Dans les chapitres
suivants nous nous plongerons dans la technologie présente derrière les portefeuilles, le minage, et les
systèmes marchands.
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Figure 1. Bitcoin overview

Acheter un Café

Alice, quÕon a présentée dans le chapitre précédent, est une nouvelle utilisatrice qui vient tout juste
dÕacquérir ses premiers bitcoins. Dans [getting_first_bitcoin], Alice a donné rendez-vous à son ami Joe
et a échangé avec lui de lÕargent liquide contre des bitcoins. La transaction créée par Joe a alimenté le
portefeuille dÕAlice avec 0.10 BTC. Alice va maintenant réaliser son premier achat dans un commerce,
en payant pour un café au Bar de Bob à Palo Alto en Californie. Le bar de Bob a récemment commencé
à accepter les paiements bitcoin, en ajoutant une option à son terminal de paiement. Les prix dans le
café de Bob sont listés dans la monnaie locale (dollar US), mais à la caisse, les clients ont le choix de
payer soit en dollars, soit en bitcoins. Alice commande un café et Bob entre la transaction dans sa
caisse. Le terminal de paiement va convertir le prix total du dollars en bitcoins au cours actuel du
marché, et va afficher les prix dans les deux monnaies, avec un QR  code contenant une requête de
paiement pour cette transaction (voir QR code de la requête de paiement (Astuce: Essayez de le scanner
!)) :

Total :
$1.50 USD
0.015 BTC
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Figure 2. QR code de la requête de paiement (Astuce: Essayez de le scanner !)

Le QR code de la requête de paiement contient lÕURL suivante, définie dans la BIP0021 :

bitcoin:1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA?
amount=0.015&
label=Bob%27s%20Cafe&
message=Purchase%20at%20Bob%27s%20Cafe

Détail de cette URL

Une adresse bitcoin: "1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA"
Le montant du paiement: "0.015"
Un label pour l'adresse du destinataire: "Le Café de Bob"
Une description pour le paiement: "Commande au café de Bob"

TIP

Contrairement à un QR code qui contient simplement une adresse bitcoin, une requête de
paiement est une URL encodée comme QR code qui contient une adresse de destination,
un montant, et une description telle que "Café de Bob." Cela permet à lÕapplication de
portefeuille Bitcoin de pré-remplir les détails du paiement et dÕafficher une description à
lÕutilisateur. Vous pouvez scanner le QR code avec votre application de portefeuille pour
voir ce quÕAlice verrait.

Bob : ÇCela fait un dollar cinquante, soit quinze millibits."

Alice utilise son smartphone pour scanner le code barre sur lÕécran de la caisse. Son smartphone
affiche un paiement de 0.0150 BTC vers Café de Bob et elle sélectionne Envoyer pour autoriser le
paiement. En quelques secondes (environ la même durée que pour une carte bancaire), Bob verra la
transaction sur son terminal, et pourra finir la commande.

Dans les sections suivantes, nous examinerons cette transaction en détails : la manière dont le
portefeuille dÕAlice a validé la transaction, comment cette transaction est propagée au sein du réseau,
la manière dont elle est vérifiée, et enfin comment Bob peut, grâce à de futures transactions, dépenser
cet argent.
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NOTE

Le réseau bitcoin gère des transactions en fractions de bitcoin, par exemple en milli-
bitcoin (1/1000ème de bitcoin) ou même en satoshis (1/100 000 000ème de bitcoin). Dans
ce livre le terme "bitcoin" se réfère à nÕimporte quelle quantité de monnaie bitcoin, de
la plus petite unité (1 satoshi) jusquÕau nombre total (21 000 000) de bitcoins qui seront
minés.

Les transactions Bitcoin
En termes simples, une transaction dit au réseau que le propriétaire dÕun certain nombre de bitcoins a
autorisé leur transfert vers un autre propriétaire. Le nouveau propriétaire peut alors dépenser ces
bitcoins en créant une nouvelle transaction qui autorise le transfert vers un autre propriétaire, et ainsi
de suite, tout au long dÕune chaîne de propriété.

Les transactions sont similaires aux lignes dans les livres de compte à partie double (ou double entrée).
En termes simples, chaque transaction contient une ou plusieurs entrées (inputs), équivalentes à des
débits sur un compte bitcoin , et une ou plusieurs sorties (outputs) équivalentes à des crédits vers un
compte bitcoin. Les sommes des entrées et des sorties ne sont pas forcément égales, et la différence
représente les "frais de transaction" : une petite somme récupérée par le mineur qui ajoute la
transaction au livre de compte bitcoin (la "blockchain"). [transaction-double-entry] montre une
transaction bitcoin représentée comme une ligne dans un livre de comptes.

La transaction comprend également une preuve de propriété pour chaque montant de bitcoin
(entrées) dont la valeur est transférée, sous la forme dÕune signature numérique du propriétaire, qui
peut être validée de façon indépendante par quiconque. Dans le langage bitcoin, ÇdépenserÈ cÕest
signer une transaction qui transfère la valeur dÕune transaction précédente à un nouveau propriétaire
identifié par une adresse bitcoin.

TIP

Les transactions transfèrent des fonds depuis leurs entrées vers leurs sorties. Une entrée
représente la provenance des fonds, en général la sortie dÕune transaction précedente.
Une sortie matérialise le transfert des fonds en les associant à une clef, qui représente une
contrainte permettant de vérouiller les fonds en specifiant le type de signature qui sera
nécessaire pour les dépenser. Les sorties dÕune transaction peuvent être utilisés en entrée
de nouvelles transactions, formant ainsi une chaîne de propriété qui représente les
transferts dÕadresse en adresse (voir Une chaîne de transactions, où la sortie dÕune
transaction est lÕentrée de la transaction suivante).

1. Transaction vues comme les entrées double dÕun livre de compte
image::images/msbt_0203.png["Transaction Double-Entry"]
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Figure 3. Une chaîne de transactions, où la sortie dÕune transaction est lÕentrée de la transaction suivante

Le paiement dÕAlice au Café de Bob utilise comme entrée une transaction antérieure. Au chapitre
précédent, Alice avait reçu des bitcoin de son ami Joe en échange de cash.  Cette transaction a
"verrouillé" un certain nombre de bitcoin, utilisables seulement avec la clef dÕAlice. Sa nouvelle
transaction pour payer Bob utilise cette transaction en entrée et crée de nouvelles sorties pour payer le
café et recevoir la monnaie. Les transactions forment une chaîne, les entrées des dernières
transactions correspondent aux sorties des transactions précédentes. La clef dÕAlice permet de créer
une signature qui déverrouille les sorties précédentes, prouvant ainsi au réseau bitcoin que cÕest elle
qui détient ces fonds. Elle lie ce paiement à lÕadresse de Bob, ce qui verrouille les fonds qui ne peuvent
être utilisés que si Bob fournit une signature valable. Cela représente un transfert de valeur de Alice
vers Bob. Cette chaîne de transaction, de Joe vers Alice puis Bob, est illustrée dans Une chaîne de
transactions, où la sortie dÕune transaction est lÕentrée de la transaction suivante.

Les formes communes de Transaction

La transaction la plus courante est un simple paiement dÕune adresse vers une autre, qui inclue
souvent un peu de "change" renvoyé vers lÕexpéditeur. Ce type de transaction a une entrée et deux
sorties et est illustrée ici : La transaction la plus commune.
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Figure 4. La transaction la plus commune

Un autre type de transaction courant est lÕagrégation de plusieurs entrées vers une sortie unique (voir
Transaction agrégeant des fonds), ce qui est équivalent à échanger un ensemble  de pièces et de billets
contre un seul billet plus gros. Ce type de transactions est parfois généré par les portefeuilles pour
nettoyer la multitude de petites sommes reçues en tant que "change".

Figure 5. Transaction agrégeant des fonds
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Enfin, un autre type de transaction courant distribue une entrée vers de nombreuses sorties qui
représentent plusieurs destinataires (voir  Transaction permettant de répartir des fonds.). Ce type de
transaction est parfois utilisé par des entités commerciales pour distribuer des fonds, par exemple la
paye des employés . range="endofrange", startref="ix_ch02-asciidoc3")

Figure 6. Transaction permettant de répartir des fonds.

Construire une Transaction
LÕapplication portefeuille dÕAlice contient les algorithmes permettant de sélectionner les entrées et
sorties afin de construire des transactions conformes aux choix dÕAlice. Elle nÕa plus quÕà choisir une
destination et un montant et le portefeuille fait le reste sans lui montrer les détails du processus. Il est
important de noter quÕun portefeuille peut construire des transactions même sÕil nÕest pas connecté. De
la même façon quÕun chèque peut être rédigé chez soi et posté à la banque plus tard, une transaction
nÕa pas besoin du réseau bitcoin pour être construite et signée. Il faut seulement quÕelle soit ensuite
envoyée vers le réseau bitcoin pour être traitée.

Sélectionner les bonnes entrées

Le portefeuille dÕAlice doit dÕabord trouver les entrées qui peuvent correspondre au montant quÕelle
veut envoyer vers Bob. La plupart des portefeuilles maintiennent une liste des "sorties non-dépensées"
qui sont verrouillées avec une des clefs du portefeuille. Ici, le portefeuille contiendrait une copie de la
sortie de la transaction de Joe (quÕil a envoyé contre du cash, voir [getting_first_bitcoin]). Un
portefeuille fonctionnant en mode "index complet" ira jusquÕà maintenir une copie de toutes les sorties
non-dépensées de lÕensemble des transactions de la blockchain. Cela permet de sélectionner les entrées
mais aussi de vérifier rapidement que les transactions reçues par le portefeuille ont des entrées
valides. Néanmoins, vu que le mode "index complet" utilise beaucoup dÕespace disque, la plupart des
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utilisateurs choisissent des portefeuilles "légers" qui ne gardent que les sorties non-dépensées
correspondant aux clefs de lÕutilisateur.

Si le portefeuille ne maintient pas de copie des sorties non-dépensées, il peut les demander au réseau
bitcoin, soit en utilisant lÕAPI dÕun des nombreux services et explorateurs, soit en utilisant lÕAPI JSON
RPC dÕun nÏud bitcoin en mode "index complet". [example_2-1] illustre une requête REST, construite
comme une requête HTTP GET vers une URL spécifique.Cette URL renverra toutes les sorties non-
dépensées liées à une adresse, permettant ainsi de construire les entrées en sélectionnant les "bonnes"
sorties à dépenser. Nous utilisons le client HHTP en ligne de commande  cURL  pour récupérer la
réponse.

1. Recherche des sorties non-dépensées pour les adresses dÕAlice

$ curl https://blockchain.info/unspent?active=1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK

Example 1. Réponse pour cette recherche

{

Ê   "unspent_outputs":[

Ê       {
Ê           "tx_hash":"186f9f998a5...2836dd734d2804fe65fa35779",
Ê           "tx_index":104810202,
Ê           "tx_output_n": 0,
Ê           "script":"76a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac",
Ê           "value": 10000000,
Ê           "value_hex": "00989680",
Ê           "confirmations":0
Ê       }

Ê   ]
}

Dans Réponse pour cette recherche la réponse montre une sortie non dépensée (qui nÕa pas encore été
utilisée) appartenant à lÕadresse de Alice 1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK. La réponse inclut
la référence à la transaction dans laquelle cette sortie non dépensée est contenue (le paiement de Joe)
et sa valeur en satoshis, de 10 millions, ce qui équivaut à 0,10 Bitcoin. Avec cette information,
lÕapplication de portefeuille dÕAlice peut construire une transaction pour transférer cette valeur à de
nouvelles adresses appartenant à dÕautres propriétaires.
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TIP Voir transaction from Joe to Alice.

Comme vous pouvez le constater, il existe une sortie non-dépensée dans le porte-monnaie dÕAlice qui
contient assez de bitcoin pour payer son café. Si cela nÕavait pas été le cas, lÕapplication aurait du
"fouiller" dans lÕensemble des sorties non-depensées, de la même façon que lÕon cherche des pièces
lorsque lÕon rend la monnaie. Dans tous les cas il peut être nécessaire de spécifier, dans la nouvelle
transaction que crée le porte-monnaie, quÕil faut récuperer un peu de change. CÕest ce que nous
verrons dans la prochaine section.

Création des sorties

La sortie dÕune transaction se présente sous la forme dÕun script qui vérouille le montant de cette
sortie, qui ne pourra être collecté que si lÕon fournit une solution à ce script. De façon simplifié, la
sortie de la transaction dÕAlice contient unn script qui signifie "cette sortie sera payée à celui qui
fournira une signature valide pour la clef correspondant à lÕadresse publique de Bob". Bob étant la
seule personne possédant les 2 clefs (publique et privée) correspondant à cette adresse, lui seul pourra
fournir une telle signature. Alice va donc vérouiller cette sortie en exigeant une signature provenant
de Bob.

Cette transaction contiendra une deuxième sortie, car Alice ne possède quÕune sortie non-dépensée
dÕun montant de 0.10 BTC, supérieur au prix du café de 0.015 BTC. Alice a donc besoin de récuperer
0.085 BTC de change. Son porte-monnaie va donc ajouter une deuxième sortie à sa transaction, qui
contiendra donc 2 sorties: un paiement vers Bob, et un paiement vers elle-même quÕelle pourra
dépenser plus tard.

Enfin, pour que la transaction soit traitée suffisamment vite par le réseau, le porte-monnaie dÕAlice va
y ajouter de petits frais de transaction. Le montant de ces frais nÕest pas explicitement précisé dans la
transaction, mais se calcule en faisant la différence entre les entrées et les sorties. Si le montant de la
sortie de change crée par Alice est de 0.0845 au lieu de 0.085, cette différence vaudra 0.10 BTC (somme
des entrées) - 0.015 (paiement pour Bob) - 0.0845 = 0.0005 BTC (un demi milli-bitcoin). Cette somme
sera collectée par le mineur qui ajoutera à la blockchain le bloc contenant cette transaction.

Cette transaction peut être affichée avec un explorateur de blockchain, voir La transaction dÕAlice au
café de Bob.
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Figure 7. La transaction dÕAlice au café de Bob

TIP Voir transaction from Alice to BobÕs Cafe.

Ajout de la transaction au livre de compte

La transaction créée par Alice fait 258 octets et contient tout ce qui nécessaire à prouver quÕelle détient
les fonds et peut les transférer vers de nouveaux détenteurs. Maintenant, il faut transmettre cette
transaction au réseau bitcoin pour quÕelle soit ajoutée au livre de comptes distribué (la blockchain).
Dans la prochaine section nous verrons comment une transaction est ajoutée à un bloc et comment ce
bloc est "miné". Enfin nous verrons comment lÕindice de confiance que le réseau accorde à ce bloc, une
fois quÕil est ajouté à la blockchain, augmentera avec lÕajout de nouveaux blocs.

Transmettre la transaction

Une transaction contient toutes les informations nécessaires à son traitement, et la façon dont elle est
transmise au réseau nÕa aucune importance. Le réseau bitcoin est un réseau peer-to-peer, chaque
noeud étant connecté à plusieurs autres noeuds. LÕobjectif du réseau est de propager les blocs et
transactions à tous les membre de ce réseau.

Comment elle se propage

Le porte-monnaie dÕAlice peut envoyer la nouvelle transaction à tous les clients bitcoin auxquels il est
connecté, via nÕimporte quelle connection Internet: filaire, WiFi, mobile. Son porte-monnaie nÕa pas
besoin dÕêtre directement connecté à celui de Bob et elle nÕest pas obligée dÕutiliser la connection
internet de son café (mais ces 2 options sont possibles et ne posent pas de problèmes). NÕimporte quel
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noeud (client) du réseau bitcoin qui reçoit une transaction valide quÕil nÕa pas déja vu va
immédiatement la propager à tous les noeuds auxquel il est connecté. De cette façon, les transactions
se propagent rapidement sur le réseau peer-to-peer et atteignent en quelques secondes un pourcentage
élevé des noeuds.

Ce que voit Bob

Si le porte-monnaie de Bob est directement connecté à celui dÕAlice, ce sera peut-être le premier noeud
à recevoir la transaction. Mais même si ce nÕest pas le cas et que la transaction se propage à travers
dÕautres noeuds, elle attendra le porte-monnaie de Bob en quelques secondes. Elle sera immédiatement
identifée comme un paiement vers Bob, parce quÕelle contient des sorties que les clefs de Bob peuvent
dépenser. Le porte-monnaie de Bob peut aussi vérifier de façon indépendante que la transaction est
bien construite, utilise des entrées non depensées et contient des frais de transaction suffisant pour
être ajoutée au prochain bloc. Bob peut alors estimer quÕelle a de grandes chances dÕêtre bientôt
ajoutée à un bloc et confirmée.

TIP

Une idée fausse mais assez répandue est quÕil faut attendre 10 minutes pour quÕune
transaction soit confirmée, voir jusquÕà 60 minutes pour 6 confirmations. Les
confirmations permettent de sÕassurer quÕune transaction a été acceptée par lÕensemble
du réseau mais ne sont pas nécessaires pour de petits paiement, comme un café. Un
marchand peut accepter de petits paiements sans confirmations, comme il le fait
régulièrement pour des paiements par carte bancaire sans présentation de pièce
dÕindentité ou de signature.

Le minage de Bitcoin
La transaction se propage sur le réseau bitcoin, mais ne sera ajoutée au livre de compte distribué (la
blockchain) que lorsquÕelle sera vérifiée et ajoutée à un bloc lors dÕune opération appelée minage. Voir
[ch8] pour une explication détaillée.

Le système de confiance utilisé par bitcoin se base sur le calcul. Les transactions sont regroupées par
blocs dont la construction demande énormément de calculs mais dont la véfification est très simple. Le
processus de minage a 2 objectifs:

¥ Le minage crée de nouveaux bitcoins dans chaque bloc, presque comme une banque centrale
imprimant de la nouvelle monnaie. Le nombre de bitcoin créé par bloc est fixe et diminue avec le
temps.

¥ Le minage crée de la confiance en assurant que les transactions ne sont confirmées que si un
nombre de calculs suffisant a été dédié à la construction du bloc qui les contient. Encore plus de
blocs signifie plus de calculs, dont plus de confiance.

Pour décrire le minage, on pourrait utiliser lÕexemple dÕun gigantesque concours de sudoku où les
participants recommence une nouvelle grille dès que quelquÕun trouve une solution, et dont la
difficulté des grilles sÕajuste pour quÕen moyenne une grille soit résolue toutes les 10 minutes.
Imaginons une grille géante de sudoku, avec plusieurs milliers de lignes et de colonnes. Il serait assez
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facile de vérifier quÕune grille terminée est bien remplie. Mais si seulement un petit nombre de cases a
été rempli, le reste étant vide, il faudra beaucoup de travail pour la terminer! La difficulté des grilles
peut être ajustée en changeant leurs tailles (en ajoutant ou en enlevant des lignes et de colonnes), mais
elles peuvent toujours être vérifiées facilement même si elles sont très grandes.  Les puzzles à résoudre
dans le réseau bitcoin se basent sur les hash cryptographiques et présentent les mêmes
caractéristiques que ces grilles de sudoku: ils sont très difficiles à résoudre mais il est très facile de
vérifier quÕune solution est bonne, et leur difficulté peut être ajustée.

Au chapitre [user-stories], nous avons rencontré Jing, étudiant en informatique à Shangai. Jing
participe au réseau bitcoin en minant. Toutes les 10 minutes environ, Jing participe à une gigantesque
course avec des milliers dÕautres mineurs afin de trouver une solution à un bloc de transactions.
Trouver une telle solution, appelée "preuve de travail", demande à lÕensemble du réseau dÕeffectuer
des quadrillions dÕopérations de hash toutes les secondes. LÕalgorithme de cette preuve de travail
demande à calculer en boucle le hash de lÕentête dÕun bloc et dÕun nombre aléatoire avec lÕalrogithme
SHA256 jusquÕà ce quÕune solution compatible avec une cible prédéterminée  soit trouvée. Le premier
mineur qui trouve cette solution gagne la compétition et ajoute le bloc à la blockchain.

Jing a commencé à miner en 2010 avec un ordinateur de bureau rapide. Avec lÕarrivée de nouveaux
mineurs, la difficulté de minage a augmenté rapidement. Très vite Jing les autres mineurs ont
commencé à utiliser du matériel spécialisé, comme des cartes graphiques haut de gamme (GPU)
comme celles utilisées dans les PCs et consoles de jeu. Au moment ou jÕécris ce texte, la difficulté est
tellement élevé que le minage nÕest rentable quÕavec des ASIC (Application Specific Integrated Circuits),
des circuits imprimés sur mesure qui implémentent des centaines dÕalgorithmes de minage
fonctionnant en parallèle sur une même puce. Jinr a aussi rejoint un pool de minage, similaire à un
pool de loterie où les joueurs de regroupent pour partager les investissements et les gains. Jing utilise
maintenant 2 mineurs ASIC connectés via USB pour miner des bitcoins 24h sur 24. Il paie sa
consommation électrique en vendant une partie des bitcoins génerés. Son ordinateur fait tourner une
copie de bitcoind, le client bitcoin de réference, utilisé comme backend pour son logiciel dédié au
minage.

Minage des transactions et génération des blocs
Une transaction se propageant sur le réseau nÕest vérifiée que lorsquÕelle est ajoutée au livre de compte
distribué, la "blockchain". Toutes les 10 minutes en moyenne, les mineurs construisent un nouveau
bloc qui contient toutes les transactions depuis le bloc précédent. Les porte-monnaies et autres
applications envoient de nouvelles transactions en permanence vers le réseau. Chaque mineur
maintient une liste temporaires de transactions non-vérifiées et y ajoute les transactions quÕil reçoit.
LorsquÕil construit un nouveau bloc, il y ajoute ces transactions non-vérifiées puis essaie de résoudre
un problème très compliqué (la preuve de travail) ce qui permet de prouver que ce nouveau bloc est
valide. Cette opération est détaillée au chapitre [mining].

Les transactions sont ajoutées à un nouveau bloc selon des règles de priorité liées entre autre aux frais
de transactions. Quand un mineur reçoit un bloc du réseau bitcoin, cela veut dire quÕil a perdu la
course pour ce bloc et il commence immédiatement une nouvelle course pour en miner un nouveau. Il
lui rajoute des transactions, le hash du bloc précedent et commence à calculer la preuve de travail.
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Chaque mineur ajoute aussi aux nouveaux blocs une transaction spéciale qui paie une récompense
vers lÕadresse du mineur (25 BTC aujourdÕhui). SÕil trouve une solution qui valide ce bloc, il gagne la
récompense car ce sera son bloc, avec cette transaction vers son adresse, qui sera ajouté à la
blockchain. Jing, qui fait partie dÕun pool de minage, a configuré son mineur pour utiliser lÕadresse du
pool pour lÕenvoi de cette récompense, qui sera ensuite partagée entre les membres du pool en
fonction de leur contribution lors du calcul du bloc.

La transaction dÕAlice a été envoyée au réseau bitcoin et ajoutée à la liste des transaction non-vérifiées.
Elle contient des frais de transaction suffisamment élevés pour être ajoutée à un nouveau bloc par le
pool de mineur de Jing. Environ 5 minutes après son envoi sur le réseau, le mineur ASIC de Jing a
trouvé une solution pour un nouveau bloc, le numéro 277316, qui contient 419 autres transactions. Le
mineur de Jing a envoyé ce nouveau bloc vers le réseau bitcoin, et il sera validé par dÕautres mineurs
qui vont commencer la course pour le bloc suivant.

Voici le bloc qui contient AliceÕs transaction.

Quelques minutes plus tard un nouveau bloc, le numéro 277317, est miné par un autre mineur et
sÕajoute à la blockchain, augmentant ainsi la quantité de calculs quÕil a fallut effectuer pour la générer.
Comme il se base sur le bloc précedent (277316), il augmente dÕautant la confiance que lÕon peut
accorder à ses transactions. LÕajout dÕun nouveau bloc aprés celui contenant une transaction est
considéré comme une "confirmation" de cette transaction. Au fur et à mesure que les blocs seront
ajoutés il deviendra exponentiellement plus difficile dÕannuler cette transaction: on pourra donc lui
faire de plus en plus confiance.

On peut voir le bloc numéro 277316 sur le schémaLa transaction dÕAlice incluse dans le bloc #277316,
qui contient la transaction dÕAlice. Il existe à ce moment une chaîne de 277316 blocs, chacun lié au
précedent, jusquÕau bloc numéro 0,  appelé aussi bloc "génésis" ("genesis bloc"). En prenant lÕimage
dÕune pile de bloc, plus sa hauteur augmente plus la difficulté de calcul des blocs augmente. Les blocs
qui suivent celui contenant la transaction dÕAlice peuvent être considérées comme des confirmations
de sa validité. Par convention, on considére quÕun bloc confirmé 6 fois est irrévocable, car il faudrait
une énorme puissance de calcul pour  le remplacer et calculer 6 autres blocs. Nous examinerons le
processus de minage, et comment il sécurise le réseau, au chapitre  [ch8].
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Figure 8. La transaction dÕAlice incluse dans le bloc #277316

Dépenser la transaction
La transaction dÕAlice fait maintenant partie dÕun bloc de la blockchain, le livre de compte distribué et
accessible par tous. Chaque client bitcoin peut vérifier de façon indépendante que cette transaction est
valide et peut être dépensée. Les clients "full-node" (qui possèdent un indexage complet de la
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blockchain) peuvent suivre les fonds, depuis leur création lors de la génération dÕun bloc jusquÕau
transfert vers lÕadresse de Bob. Les clients légers (qui ne possédent pas la blockchain complète)
peuvent effectuer une "vérification simplifiée de paiement" (Simplified Payment Verification, ou SPV)
en vérifiant que la transaction fait partie de la blockchain et est suivie de plusieurs autres blocs, ce qui
permet de sÕassurer quÕelle est considérée comme valide par le réseau bitcoin.

Bob peut maintenant dépenser la sortie de cette transaction, et dÕautres qui lui sont addressées, en
créant une nouvelle transaction qui prend en entrée les sorties quÕil veut dépenser, et les transférer
vers dÕautres destinataires. Par exemple, Bob peut transférer les fonds envoyés par Alice vers un de ses
fournisseurs. En pratique, son client bitcoin va aggréger plusieurs petites transactions en un seul
paiement, par exemple en combinant tous les bitcoins reçus dans la journée. Cela revient à transférer
les fonds vers une seule adresse, qui serait celle du "compte courant" de son entreprise. Un schéma
représentant une aggrégation de transaction se trouve ici: Transaction agrégeant des fonds.

En dépensant les transactions dÕAlice et dÕautres clients, il allonge la chaîne de transactions qui sont
ajoutée à la blockchain, visible et vérifiable par tous. Supposons que Bob paie son web designer
Gopesh, à Bangalore, pour créer un nouveau site web. La chaîne de transactions ressemblera alors à La
transaction dÕAlice incluse dans la chaine de transactions de Joe vers Gopesh.

Figure 9. La transaction dÕAlice incluse dans la chaine de transactions de Joe vers Gopesh
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Le client bitcoin

Bitcoin Core: lÕimplémentation de référence
Vous pouvez télécharger le client de référence  Bitcoin Core, aussi connu sous le nom de  "Satoshi
client," sur bitcoin.org. Le client de référence implémente tous les aspects du système bitcoin, ce qui
comprend le porte-monnaie, un moteur de vérification des transactions avec une copie complète de
tout le registre de transactions (blockchain), ainsi quÕune noeud réseau complet du réseau peer-to-peer
bitcoin.

Sur la page Choisir votre portefeuille Bitcoin, choisissez Bitcoin core afin de télécharger le client de
référence. Vous téléchargerez un installateur exécutable en fonction de votre système dÕexploitation.
Pour Window il sÕagit soit dÕune archive au format ZIP soit dÕun .exe exécutable. Pour Mac OS il sÕagit
dÕune image disque .dmg. Pour linux il sÕagit soit dÕune package PPA pour Ubuntu soit dÕune archive
tar.gz. La page bitcoin.org listant les clients bitcoin recommandés est présentée dans Choisir un client
sur bitcoin.org.

Figure 1. Choisir un client sur bitcoin.org

Lancement de Bitcoin Core pour la première fois

Si vous téléchargez un installateur tel quÕun .exe, .dmg ou PPA, vous pouvez lÕinstaller de la même
façon que nÕimporte quelle application sur votre système dÕexploitation. Pour Windows, lancez le .exe
et suivez les instructions pas-à-pas. Pour Mac OS, lancez le .dmg et placez lÕicône Bitcoin-Qt dans votre
répertoire Applications. Pour Ubuntu, double-cliquez sur le PPA dans votre explorateur de fichiers et il
ouvrira le gestionnaire dÕapplications afin dÕinstaller le package. Une fois lÕinstallation terminée vous
devriez avoir une nouvelle application nommée Bitcoin-Qt dans votre liste dÕapplications. Double-
cliquez sur lÕicône afin de démarrer le client bitcoin.

La première fois que vous lancez Bitcoin Core il commencera par télécharger la blockchain, un
processus qui peut prendre plusieurs jours (voir Ecran de Bitcoin Core durant la synchronisation de la
blockchain).  Laissez le tourner en tâche de fond jusquÕà ce quÕil affiche "Synchronisé" au lieu de
"Désynchronisé" à coté du solde.
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Figure 2. Ecran de Bitcoin Core durant la synchronisation de la blockchain

TIP

Bitcoin Core conserve une copie complète du registre de transactions (blockchain),
contenant toutes les transactions ayant eu lieu sur le réseau bitcoin depuis son lancement
en 2009. Cette masse de donnée sÕélève à quelques giga-octets (approximativement 16 Go
fin 2013) et est téléchargée progressivement sur plusieurs jours. Le client ne sera pas
capable dÕopérer des transactions ou de mettre à jour son solde tant que que la blockchain
complète nÕest pas téléchargée. Durant tout ce temps, le client affichera lÕétat
"désynchronisé" en face du solde et affichera "En cours de synchronisation" en bas de la
fenêtre. Assurez-vous que vous disposez dÕassez dÕespace disque et de bande passante
pour compléter la synchronisation initiale.

Compiler Bitcoin Core depuis le Code Source

Pour les développeurs, il existe également la possibilité de télécharger le code source complet en
archive ZIP ou celle de cloner le dépôt GitHub de référence.  Sur la page Bitcoin de GitHub,
sélectionnez "Download ZIP" sur la droite ou utilisez la commande git pour créer une copie locale du
code source sur votre système. Dans lÕexemple suivant, nous clonons le code source à partir dÕune
commande Unix, sous Linux ou Mac OS:
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$ git clone https://github.com/bitcoin/bitcoin.git
Cloning into 'bitcoin'...
remote: Counting objects: 31864, done.
remote: Compressing objects: 100% (12007/12007), done.
remote: Total 31864 (delta 24480), reused 26530 (delta 19621)
Receiving objects: 100% (31864/31864), 18.47 MiB | 119 KiB/s, done.
Resolving deltas: 100% (24480/24480), done.
$

TIP

Les instructions et résultats peuvent varier dÕune version à lÕautre. Suivez la
documentation jointe au code même si elle diffère des instructions ci-présentes, et
attendez-vous à ce que les résultats sur votre écran soient légèrement différents des
exemples contenus ici.

Quand la copie est terminée, vous disposerez dÕune copie complète du code source dans le répertoire
bitcoin. Allez dans ce répertoire en tapant cd bitcoin en ligne de commande:

$ cd bitcoin

Par défaut, la copie locale sera synchronisée avec le code le plus récent, qui peut potentiellement
correspondre à une version non-stable ou bêta de bitcoin. Avant de compiler le code, sélectionnez une
version spécifique en effectuant un checkout dÕun release tag. Les tags sont utilisés par les
développeurs pour marquer des version spécifiques du code source. Afin de découvrir les tags
disponible, nous utilisons la commande   git tag:

$ git tag
v0.1.5
v0.1.6test1
v0.2.0
v0.2.10
v0.2.11
v0.2.12

[... beaucoup d'autres tags ...]

v0.8.4rc2
v0.8.5
v0.8.6
v0.8.6rc1
v0.9.0rc1

La liste de tags montre toutes les numéros de version de bitcoin. Par convention, les release candidates,
qui sont destinées au test, ont le suffixe "rc". Les releases stables pouvant être utilisée en production ne
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possèdent pas de suffixe. Dans la liste précédente, sélectionnez la version la plus récente, qui à lÕheure
ou jÕécris est la  v0.9.0rc1. Pour synchroniser le code local avec cette version, utilisez la commande git
checkout:

$ git checkout v0.9.0rc1
Note: checking out 'v0.9.0rc1'.

HEAD is now at 15ec451... Merge pull request #3605
$

Le code source inclut la documentation qui se trouve dans plusieurs fichiers. Lisez la documentation
principale qui se trouve dans le fichier README.md du répertoire bitcoin en tapant more README.md
en ligne de commandes et en appyant sur la barre dÕespace pour passer à la page suivante. Dans ce
chapitre nous compilerons le client bitcoin en ligne de commandes, également connu sous le nom de
bitcoind sur Linux. Lisez les instructions pour la compilation de bitcoind sur votre plateforme en
tapant more doc/build-unix.md. DÕautres instructions pour Mac OS et Windows peuvent être trouvées
dans le répertoire doc, respectivement  build-osx.md ou build-msw.md.

Passez en revue attentivement les pré-requis de la compilation qui constituent la première partie de la
documentation. Ils correspondent à des librairies qui doivent être présentes sur votre système avant
que vous puissiez débuter la compilation de bitcoin. Si ces pré-requis sont manquants, le processus
échouera avec une erreur. Si cela arrive parce que vous avez omis un pré-requis, vous pouvez
lÕinstallez puis reprendre le processus là où vous lÕaviez laissé. Une fois les pré-requis installés, vous
démarrez la compilation en générant un ensemble de scripts de compilation en utilisant le script
-autogen.sh_.

TIP

Le processus de compilation de Bitcoin Core a été changé depuis la version 0.9 pour
utiliser les système autogen/configure/make. Les versions antérieures utilisent un simple
makefile et fonctionnent dÕune manière légèrement différente de lÕexemple montré ici.
Suivez les instructions relatives à la version que vous souhaitez compiler. Le système
autogen/configure/make introduit dans la 0.9 est probablement le système qui sera utilisé
dans toutes les versions futures et est également le système utilisés dans les exemples qui
suivent.

$ ./autogen.sh
configure.ac:12: installing `src/build-aux/config.guess'
configure.ac:12: installing `src/build-aux/config.sub'
configure.ac:37: installing `src/build-aux/install-sh'
configure.ac:37: installing `src/build-aux/missing'
src/Makefile.am: installing `src/build-aux/depcomp'
$

Le script autogen.sh crée un ensemble de scripts de configuration qui iront interroger votre sytème
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pour découvrir les paramètres à appliquer et sÕassurer que vous disposez de toutes les librairies
nécessaires pour compiler le code. Le plus important dÕentre eux est le configure script qui offre de
multiple options pour configurer le processus de compilation. Tapez ./configure --help pour voir les
différentes options:

$ ./configure --help

`configure' configures Bitcoin Core 0.9.0 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
Ê -h, --help              display this help and exit
Ê     --help=short        display options specific to this package
Ê     --help=recursive    display the short help of all the included packages
Ê -V, --version affiche les informations sur la version et quitte

[... many more options and variables are displayed below ...]

Optional Features:
Ê --disable-option-checking  ignore unrecognized --enable/--with options
Ê --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
Ê --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]

[... plus d'options ...]

Use these variables to override the choices made by `configure' or to help
it to find libraries and programs with nonstandard names/locations.

Report bugs to <info@bitcoin.org>.

$

Le script configure vous permet dÕactiver ou de désactiver certaines fonctionnalités de bitcoind en
utilisant les flags  --enable-FONCTIONNALITE et --disable-FONCTIONNALITE ou FONCTIONNALITE est
remplacé par le nom de la fonctionnalité comme listé dans lÕaide. Dans ce chapitre nous compilerons
un client bitcoind avec toutes les fonctionnalités par défaut. Nous nÕutiliserons pas les flags de
configuration, mais vous pouvez les étudier afin de comprendre quelles fonctionnalités sont
optionnelles sur le client. Lancez le script +configure + pour découvrir automatiquement toutes les
librairies nécessaires et créer un script de build adapté pour votre système :
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$ ./configure
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... no
checking for mawk... mawk
checking whether make sets $(MAKE)... yes

[... many more system features are tested ...]

configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating src/test/Makefile
config.status: creating src/qt/Makefile
config.status: creating src/qt/test/Makefile
config.status: creating share/setup.nsi
config.status: creating share/qt/Info.plist
config.status: creating qa/pull-tester/run-bitcoind-for-test.sh
config.status: creating qa/pull-tester/build-tests.sh
config.status: creating src/bitcoin-config.h
config.status: executing depfiles commands
$

Si tout se passe bien, la commande configure+ créera des scripts de build adaptés qui nous
permettrons de compiler bitcoind. Si il subsiste des librairies manquantes ou des erreurs, la
commande configure échouera avec une erreur au lieu de créer les scripts de build. Si une erreur
apparait, il sÕagit probablement dÕune librairie manquante ou non compatible. Relisez encore la
documentation  afin de vous assurer que vous installez les bon pré-requis. Ensuite, relancez la
commande configure et voyez si cela corrige lÕerreur. La prochaine étape consiste en la compilation du
code, étape qui peut prendre jusquÕa une heure pour sÕexécuter. Pendant la compilation vous devriez
voir des information apparaitre toutes les secondes ou toutes les minutes, ou une erreur si quelque
chose se passe mal. Le processus de compilation peut être repris a nÕimporte quel moment si il est
interrompu. Tapez make pour commencer à compiler:
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$ make
Making all in src
make[1]: Entering directory `/home/ubuntu/bitcoin/src'
make  all-recursive
make[2]: Entering directory `/home/ubuntu/bitcoin/src'
Making all in .
make[3]: Entering directory `/home/ubuntu/bitcoin/src'
Ê CXX    addrman.o
Ê CXX    alert.o
Ê CXX    rpcserver.o
Ê CXX    bloom.o
Ê CXX    chainparams.o

[... beaucoup d'autres messages de compilation ...]

Ê CXX    test_bitcoin-wallet_tests.o
Ê CXX    test_bitcoin-rpc_wallet_tests.o
Ê CXXLD  test_bitcoin
make[4]: Leaving directory `/home/ubuntu/bitcoin/src/test'
make[3]: Leaving directory `/home/ubuntu/bitcoin/src/test'
make[2]: Leaving directory `/home/ubuntu/bitcoin/src'
make[1]: Leaving directory `/home/ubuntu/bitcoin/src'
make[1]: Entering directory `/home/ubuntu/bitcoin'
make[1]: Nothing to be done for `all-am'.
make[1]: Leaving directory `/home/ubuntu/bitcoin'
$

Si tout se passe bien, bitcoind est désormais compilé. La dernière étape est lÕinstallation de lÕexécutable
bitcoind en utilisant la commande make :

$ sudo make install
Making install in src
Making install in .
Ê/bin/mkdir -p '/usr/local/bin'
Ê /usr/bin/install -c bitcoind bitcoin-cli '/usr/local/bin'
Making install in test
make  install-am
Ê/bin/mkdir -p '/usr/local/bin'
Ê /usr/bin/install -c test_bitcoin '/usr/local/bin'
$

Vous pouvez vous assurer que bitcoin est correctement installé en demandant au système le chemin
des deux exécutable comme suit:
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$ which bitcoind
/usr/local/bin/bitcoind

$ which bitcoin-cli
/usr/local/bin/bitcoin-cli

LÕinstallation par défaut de bitcoind se fait dans le répertoire /usr/local/bin. Quand vous lancez bitcoind
pour la première fois, il vous demandera de créer un fichier de configuration contenant un mot de
passe sécurisé pour lÕinterface JSON-RPC. Lancez bitcoind en tapant bitcoind depuis le terminal:

$ bitcoind
Error: To use the "-server" option, you must set a rpcpassword in the configuration file:
/home/ubuntu/.bitcoin/bitcoin.conf
Il est recommandé d'utiliser le mot de passe aléatoire suivant:
rpcuser=bitcoinrpc
rpcpassword=2XA4DuKNCbtZXsBQRRNDEwEY2nM6M4H9Tx5dFjoAVVbK
(vous n'avez pas besoin de retenir ce mot de passe)
Le nom d'utilisateur et le mot de passe NE DOIVENT PAS être les mêmes.
Si ce fichier n'existe pas, créez-en un avec des permissions de lecture seulement.
Il est aussi recommandé de configurer une alerte pour être notifié des éventuels probl
èmes à l'aide de l'option +alertnotify+;
par exemple: alertnotify=echo %s | mail -s "Bitcoin Alert" admin@foo.com

Editez le fichier de configuration à lÕaide de votre éditeur préféré et mettez à jour les paramètres en
remplaçant le mot de passe par un mot de passe complexe comme recommandé par bitcoind. NÕutilisez
pas le mot de passe utilisé ici. Créez un fichier dans le répertoire .bitcoin nommé .bitcoin/bitcoin.conf et
rentrez un nom dÕutilisateur et un mot de passe:

rpcuser=bitcoinrpc
rpcpassword=2XA4DuKNCbtZXsBQRRNDEwEY2nM6M4H9Tx5dFjoAVVbK

Durant lÕédition du fichier de configuration, vous souhaiterez peut-être ajouter quelques options, telles
que txindex (voir LÕindex de base de données de transactions et lÕoption txindex). Pour un listing
complet des options disponibles, tapez bitcoind -- help.

Lancez maintenant le client Bitcoin Core. La première fois que vous le lancez, il reconstruira la
blockchain bitcoin en téléchargeant les blocs. Il sÕagit dÕun fichier de plusieurs giga-octets et il prendra
2 jours en moyenne pour être totalement téléchargé. Vous pouvez raccourcir le temps dÕinitialisation
en téléchargeant une copie partielle de la blockchain en utilisant un client BitTorrent depuis
SourceForge.

Lancez bitcoind en tâche de fond avec lÕoption -daemon:
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$ bitcoind -daemon

Bitcoin version v0.9.0rc1-beta (2014-01-31 09:30:15 +0100)
Using OpenSSL version OpenSSL 1.0.1c 10 May 2012
Default data directory /home/bitcoin/.bitcoin
Using data directory /bitcoin/
Using at most 4 connections (1024 file descriptors available)
init message: Verifying wallet...
dbenv.open LogDir=/bitcoin/database ErrorFile=/bitcoin/db.log
Bound to [::]:8333
Bound to 0.0.0.0:8333
init message: Loading block index...
Opening LevelDB in /bitcoin/blocks/index
Opened LevelDB successfully
Opening LevelDB in /bitcoin/chainstate
Opened LevelDB successfully

[... d'autres messages de démarrage ...]

Utilisation de lÕAPI JSON-RPC de BitcoinCore depuis la
ligne de commande
Le client Bitcoin Core implémente une interface JSON-RPC qui peut également être interrogée avec
lÕoutil en ligne de commande bitcoin-cli. La ligne de commande nous permet dÕexpérimenter de façon
interactive les fonctionnalités qui sont également disponibles au travers de lÕAPI. Pour commencer,
utilisez la commande help pour consulter la liste des commande RPC bitcoin disponibles:

$ bitcoin-cli help
addmultisigaddress nrequired ["key",...] ( "account" )
addnode "node" "add|remove|onetry"
backupwallet "destination"
createmultisig nrequired ["key",...]
createrawtransaction [{"txid":"id","vout":n},...] {"address":amount,...}
decoderawtransaction "hexstring"
decodescript "hex"
dumpprivkey "bitcoinaddress"
dumpwallet "filename"
getaccount "bitcoinaddress"
getaccountaddress "account"
getaddednodeinfo dns ( "node" )
getaddressesbyaccount "account"
getbalance ( "account" minconf )
getbestblockhash
getblock "hash" ( verbose )
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getblockchaininfo
getblockcount
getblockhash index
getblocktemplate ( "jsonrequestobject" )
getconnectioncount
getdifficulty
getgenerate
gethashespersec
getinfo
getmininginfo
getnettotals
getnetworkhashps ( blocks height )
getnetworkinfo
getnewaddress ( "account" )
getpeerinfo
getrawchangeaddress
getrawmempool ( verbose )
getrawtransaction "txid" ( verbose )
getreceivedbyaccount "account" ( minconf )
getreceivedbyaddress "bitcoinaddress" ( minconf )
gettransaction "txid"
gettxout "txid" n ( includemempool )
gettxoutsetinfo
getunconfirmedbalance
getwalletinfo
getwork ( "data" )
help ( "command" )
importprivkey "bitcoinprivkey" ( "label" rescan )
importwallet "filename"
keypoolrefill ( newsize )
listaccounts ( minconf )
listaddressgroupings
listlockunspent
listreceivedbyaccount ( minconf includeempty )
listreceivedbyaddress ( minconf includeempty )
listsinceblock ( "blockhash" target-confirmations )
listtransactions ( "account" count from )
listunspent ( minconf maxconf  ["address",...] )
lockunspent unlock [{"txid":"txid","vout":n},...]
move "fromaccount" "toaccount" amount ( minconf "comment" )
ping
sendfrom "fromaccount" "tobitcoinaddress" amount ( minconf "comment" "comment-to" )
sendmany "fromaccount" {"address":amount,...} ( minconf "comment" )
sendrawtransaction "hexstring" ( allowhighfees )
sendtoaddress "bitcoinaddress" amount ( "comment" "comment-to" )
setaccount "bitcoinaddress" "account"
setgenerate generate ( genproclimit )
settxfee amount
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signmessage "bitcoinaddress" "message"
signrawtransaction "hexstring" (
[{"txid":"id","vout":n,"scriptPubKey":"hex","redeemScript":"hex"},...]
["privatekey1",...] sighashtype )
stop
submitblock "hexdata" ( "jsonparametersobject" )
validateaddress "bitcoinaddress"
verifychain ( checklevel numblocks )
verifymessage "bitcoinaddress" "signature" "message"
walletlock
walletpassphrase "passphrase" timeout
walletpassphrasechange "oldpassphrase" "newpassphrase"

Obtenir des information sur le statut du client Bitcoin Core

Cmmande: getinfo

La commande RPC bitcoin getingo affiche des informations à propos du statut du noeud bitcoin, le
portefeuille, et la base de données de la blockchain. Utilisez bitcoin-cli pour la lancer:

$ bitcoin-cli getinfo

{
Ê   "version" : 90000,
Ê   "protocolversion" : 70002,
Ê   "walletversion" : 60000,
Ê   "balance" : 0.00000000,
Ê   "blocks" : 286216,
Ê   "timeoffset" : -72,
Ê   "connections" : 4,
Ê   "proxy" : "",
Ê   "difficulty" : 2621404453.06461525,
Ê   "testnet" : false,
Ê   "keypoololdest" : 1374553827,
Ê   "keypoolsize" : 101,
Ê   "paytxfee" : 0.00000000,
Ê   "errors" : ""
}

Les données sont retournées au format JavaScript Object Notation (JSON), un format facilement
"consommable" par tous les langages de programmations mais également très lisible. Parmi ces
données nous voyons les numéros de version du client bitcoin(90000), du protocole (70002), et du
portefeuille(60000). Nous voyons le solde actuel contenu dans le portefeuille, qui est égal à zéro. Nous
voyons lÕactuelle hauteur de bloc, qui nous montre combien de blocs sont connus par ce client
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(286216). Nous voyons également des statistiques variées concernant le réseau bitcoin et les
paramètres du client. Nous explorerons ces paramètres en détail dans le reste de ce chapitre.

TIP

Cela prendra du temps, peut-être plus dÕune journée, pour que le client bitcoind "rattrape"
la hauteur actuelle de la blockchain le temps quÕil télécharge les blocs provenant dÕautres
clients bitcoin. Vous pouvez consulter lÕétat dÕavancement en utilisant getinfo pour
connaitre exactement le nombre de blocs du client.

Configuration et cryptage du portefeuile

Commandes: encryptwallet, walletpassphrase

Avant de procéder à la création de clés et à dÕautres commandes, vous utiliserez la commande
encryptwallet avec le mot de passe "foo". NÕoubliez pas bien sûr de remplacer "foo" par un mot de
passe complexe !

$ bitcoin-cli encryptwallet foo
wallet encrypted; Bitcoin server stopping, restart to run with encrypted wallet. The
keypool has been flushed, you need to make a new backup.
$

Vous pouvez vérifier que le portefeuille a bien été crypté en utilisant encore la commande getinfo.
Cette fois-ci vous remarquerez une nouvelle entrée nommée unlocked_until. Il sÕagit dÕun compteur
montrant combien de temps le mot de passe permettant le décryptage est enregistré en mémoire, et
combien de temps le portefeuille est déverrouillé.  La première fois il sera à zero, cela veut dire que le
portefeuille est verrouillé:

$ bitcoin-cli getinfo

{
Ê   "version" : 90000,

#[... autres informations...]

Ê   "unlocked_until" : 0,
Ê   "errors" : ""
}
$

Pour déverrouiller le portefeuille, utilisez la commande walletpassphrase qui prend deux
paramètresÑle mot de passe et un nombre de secondes au bout desquelles le portefeuille sera
verrouillé à nouveau (une minuterie):
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$ bitcoin-cli walletpassphrase foo 360
$

Vous pouvez vous assurer que le portefeuille est déverrouillé et voir lÕétat de la minuterie en tapant
getinfo à nouveau:

$ bitcoin-cli getinfo

{
Ê   "version" : 90000,

#[... autres informations ...]

Ê   "unlocked_until" : 1392580909,
Ê   "errors" : ""
}

Sauvegarde du portefeuille, export au format texte et restauration

Commandes: backupwallet, importwallet, dumpwallet

La prochaine étape consiste à nous entrainer à créer un fichier de sauvegarde du portefeuille pour
ensuite le restaurer à partir de ce même fichier. Utilisez la commande backupwallet pour la
sauvegarde en spécifiant le nom du fichier de destination en paramètre. Ici nous sauvegardons le
portefeuille dans un fichier nommé wallet.backup:

$ bitcoin-cli backupwallet wallet.backup
$

Maintenant, pour restaurer le fichier de sauvegarde, utilisez la commande importwallet. Si votre
portefeuille est verrouillé, vous devrez dÕabord le déverrouiller (voir walletpassphrase dans la section
précédente) pour importer le fichier de sauvegarde:

$ bitcoin-cli importwallet wallet.backup
$

La commande dumpwallet peut être utilisée pour exporter le portefeuille dans un fichier texte lisible
par un humain:

13



$ bitcoin-cli dumpwallet wallet.txt
$ more wallet.txt
# Wallet dump created by Bitcoin v0.9.0rc1-beta (2014-01-31 09:30:15 +0100)
# * Created on 2014-02- 8dT20:34:55Z
# * Best block at time of backup was 286234
(0000000000000000f74f0bc9d3c186267bc45c7b91c49a0386538ac24c0d3a44),
#   mined on 2014-02- 8dT20:24:01Z

KzTg2wn6Z8s7ai5NA9MVX4vstHRsqP26QKJCzLg4JvFrp6mMaGB9 2013-07- 4dT04:30:27Z change=1 #
addr=16pJ6XkwSQv5ma5FSXMRPaXEYrENCEg47F
Kz3dVz7R6mUpXzdZy4gJEVZxXJwA15f198eVui4CUivXotzLBDKY 2013-07- 4dT04:30:27Z change=1 #
addr=17oJds8kaN8LP8kuAkWTco6ZM7BGXFC3gk
[... beaucoup d'autres clés ...]

$

Adresses du portefeuille et reception des transactions

Commandes: getnewaddress, getreceivedbyaddress, listtransactions, getaddressesbyaccount,
getbalance

Le client bitcoin de référence maintient un pool dÕadresses dont la taille est spécifiée par keypoolsize
quand vous utilisez la commande getinfo. Ces adresses sont générées automatiquement et peuvent être
utilisées comme des adresses publique de réception ou des adresse utilisées pour la monnaie dÕune
transaction. Pour récupérer une de ces adresses, utilisez la commande getnewaddress:

$ bitcoin-cli getnewaddress
1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL

Maintenant nous pouvons utiliser cette adresse pour envoyer de petits montants en bitcoin vers notre
portefeuille depuis un portefeuille externe (en supposant que vous disposiez dÕun peu de bitcoin sur
un échange, un portefeuille web ou un autre client bitcoind). Pour cet exemple nous envoyons 50
millibits (0.050 bitcoin) vers lÕadresse que nous avons récupérée.

Nous pouvons maintenant interroger le client bitcoind sur le montant reçu par cette adresse, et
spécifier combien de confirmations sont requises avant que le montant puisse être effectivement pris
en compte dans le solde. Pour cet exemple, nous spécifions zéro confirmations. Quelque secondes
après avoir envoyé les bitcoins depuis lÕautre portefeuille, nous pourront les voir dans notre
portefeuille. Nous utilisons getreceivedbyaddress avec lÕadresse et le nombre de confirmations à zéro
(0):

$ bitcoin-cli getreceivedbyaddress 1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL 0
0.05000000
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Si nous omettons le zero à la fin de cette commande, nous ne pourrons voir que les montant ayant au
moins  minconf confirmations, minconf étant le paramètre correspondant au minimum de
confirmations avant que la transaction soit listée dans notre solde. Le paramètre minconf est spécifié
dans le fichier de configuration de bitcoind. Parce que la transaction envoyant ces bitcoins vient tout
juste dÕêtre effectuée, elle nÕa pas encore été confirmée et donc nous verrons un solde à zéro:

$ bitcoin-cli getreceivedbyaddress 1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL
0.00000000

Les transactions reçues par le portefeuille entier peuvent également être affichées en utilisant la
commande listtransactions:

$ bitcoin-cli listtransactions

[
Ê   {
Ê       "account" : "",
Ê       "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
Ê       "category" : "receive",
Ê       "amount" : 0.05000000,
Ê       "confirmations" : 0,
Ê       "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
Ê       "time" : 1392660908,
Ê       "timereceived" : 1392660908
Ê   }
]

Nous pouvons lister toutes les adresses du portefeuille en utilisant la commande
getaddressesbyaccount:

$ bitcoin-cli getaddressesbyaccount ""
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[
Ê   "1LQoTPYy1TyERbNV4zZbhEmgyfAipC6eqL",
Ê   "17vrg8uwMQUibkvS2ECRX4zpcVJ78iFaZS",
Ê   "1FvRHWhHBBZA8cGRRsGiAeqEzUmjJkJQWR",
Ê   "1NVJK3JsL41BF1KyxrUyJW5XHjunjfp2jz",
Ê   "14MZqqzCxjc99M5ipsQSRfieT7qPZcM7Df",
Ê   "1BhrGvtKFjTAhGdPGbrEwP3xvFjkJBuFCa",
Ê   "15nem8CX91XtQE8B1Hdv97jE8X44H3DQMT",
Ê   "1Q3q6taTsUiv3mMemEuQQJ9sGLEGaSjo81",
Ê   "1HoSiTg8sb16oE6SrmazQEwcGEv8obv9ns",
Ê   "13fE8BGhBvnoy68yZKuWJ2hheYKovSDjqM",
Ê   "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
Ê   "1KHUmVfCJteJ21LmRXHSpPoe23rXKifAb2",
Ê   "1LqJZz1D9yHxG4cLkdujnqG5jNNGmPeAMD"
]

Au final, la commande getbalance montrera le solde total du portefeuille en ajoutant toutes les
transactions confirmées avec au moins minconf confirmations:

$ bitcoin-cli getbalance
0.05000000

TIP

Si la transaction nÕest pas encore confirmée, le solde retourné par getbalance sera égal a
zéro. La configuration de lÕoption "minconf" détermine le nombre minimum de
confirmations requises avant quÕune transaction soit prise en compte dans le solde.

Décodage et exploration des transactions

Commandes: gettransaction, getrawtransaction, decoderawtransaction

Nous explorerons maintenant la transaction entrante litée précedemment en utilisant la commande
gettransaction. Nous pouvons récupérer une transaction à lÕaide de son hash, lÕattribut txid montré
précédemment, à lÕaide de la commande gettransaction:
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{
Ê   "amount" : 0.05000000,
Ê   "confirmations" : 0,
Ê   "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
Ê   "time" : 1392660908,
Ê   "timereceived" : 1392660908,
Ê   "details" : [
Ê       {
Ê           "account" : "",
Ê           "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
Ê           "category" : "receive",
Ê           "amount" : 0.05000000
Ê       }
Ê   ]
}

TIP

Les identifiants de transactions (txid) ne font pas autorité tant quÕune transaction nÕa pas
été confirmée. LÕabsence de hash de transaction dans la blockchain ne veut pas dire que la
transaction nÕa pas été traitée. Cet aspect est connu sous le nom de"transaction
malleability") "malléabilité de transaction", car les hash de transaction peuvent être
modifié avant leur confirmation dans un bloc. Apres la confirmation, les txids sont
immuables et font autorité.

Le format de transaction obtenu à lÕaide de la commande gettransaction est un format simplifié. Pour
récupérer le code complet dÕune transaction et le décoder, nous utiliserons deux commandes:
getrawtransaction et decoderawtransaction. La première, getrawtransaction, prend le hash de
transaction (txid) comme paramètre et retourne la transaction complète en chaine de caractère
hexadécimaux "bruts" (raw), exactement comme elle apparait sur le réseau bitcoin:

Pour décoder cette chaîne de caractères, utilisez la commande decoderawtransaction. Copiez et collez
les caractère hexadécimaux en tant que premier paramètre de decoderawtransaction afin dÕobtenir le
contenu complet interprété au format de données JSON (pour des raisons de mise en forme la chaine
hexadécimale est raccourcie dans lÕexemple suivant):

Le décodage de la transaction montre tous les composants de la transaction, y compris les entrée et les
sorties (les inputs et les outputs). Dans cet exemple nous voyons que la transaction qui a crédité notre
nouvelle adresse avec 50 millibits a utilisé une entrée et a généré deux sorties. LÕentrée de cette
transaction était la sortie dÕune transaction précédente confirmée (comme le montre le vin txid
commençant par d3c7). Les deux sorties correspondent au crédit de 50 millibits et une sortie contenant
la monnaie retournée à lÕexpéditeur.

Nous pouvons aller plus loin dans lÕexploration de la blockchain en examinant la transaction
précédentes référencée par son txid dans cette transaction en utilisant les même commandes (à savoir,
gettransaction). En naviguant de transaction en transaction, nous pouvons suivre la chaîne des
transaction et voir les coins transmis entre les propriétaire des adresses.
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Une fois que la transaction que nous avons reçue est confirmée par son inclusion dans un bloc, la
commande gettransaction nous retournera des information supplémentaires et montrera le  block
hash (identifiant) dans lequel la transaction  a été incluse.

Nous voyons ici les nouvelles informations dans les entrées blockhash (le hash du bloc dans lequel la
transaction est incluse) and dans blockindex qui possède la valeur 18 (indiquant que notre transaction
était la 18ème transaction de ce bloc).

LÕindex de base de données de transactions et lÕoption txindex

Par défaut, Bitcoin Core construit une base de données contenant uniquement les transactions
relatives au portefeuille de lÕutilisateur. Si vous souhaitez accéder à nÕimporte quelle transaction
avec des commandes telles que  gettransaction, vous devez configurer Bitcoin Core pour quÕil
construise un index complet des transactions à lÕaide de lÕoption txindex. Positionnez lÕoption
txindex=1 dans le fichier de configuration de Bitcoin Core (que vous trouverez généralement
dans le répertoire .bitcoin/bitcoin.conf). Une fois que vous avez changé cette option, vous devrez
redémarrer bitcoind et attendre quÕil reconstruise lÕindex.

Exploration des blocs

Commandes: getblock, getblockhash

Maintenant que nous connaissons le bloc dans lequel a été inclu notre transaction, nous pouvons
effectuer des requêtes sur ce bloc. Nous utilisons la commande getblock avec le hash du bloc en
paramètre:

Le bloc contient 367 transactions et comme vous pouvez le voir, la 18ème transaction (9ca8f9...)
correspond au txid de celle créditant 50 millibits sur notre adresse. La donnée height nous indique
quÕil sÕagit du bloc numéro 286384 dans la blockchain.

Nous pouvons également récupérer un bloc avec la hauteur de bloc en utilisant la commande
getblockhash qui prend la hauteur de bloc en paramètre et retourne le hash du bloc:

Ici nous récupérons le hash su "genesis block", le premier bloc miné par Satoshi Nakamoto à la hauteur
zero. La récupération de ce bloc donne:

Les commandes getblock, getblockhash, et gettransaction peuvent être utilisées pour explorer la base
de donnée de la blockchain:

Créer, Signer, et Soumettre des Transactions basées sur des <phrase
role="keep-together">sorties non dépensées (Unspent Outputs)</phrase>

Commandes: listunspent, gettxout, createrawtransaction, decoderawtransaction, signrawtransaction,
sendrawtransaction
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Les transaction Bitcoin sont basée sur le concept de dépense de sorties ("outputs"), qui résultent de
transactions précédentes, afin de créer une chaine de transactions qui transfère la propriété dÕune
adresse vers une autre adresse. Notre portefeuille a maintenant reçu une transaction qui a assigné une
sortie à notre adresse. Une fois que cette transaction est confirmée, nous pouvons dépenser cette
sortie.

Premièrement, nous utilisons la commande listunspent pour afficher toutes les sorties non dépensées
et confirmées de notre portefeuille.

$ bitcoin-cli listunspent

Nous voyons que la transaction 9ca8f9... a créé une sortie (avec lÕindex vout 0) assignée à lÕadresse
1hvzSo... pour le montant de 50 millibits. A cet instant la transaction a reçu sept confirmations. Les
transactions utilisent des sorties précédemment créées comme entrées en y faisant référence via leur
précédent txid (identifiant de transaction) et lÕindex vout. Nous allons donc maintenant créer une
transaction qui dépensera le vout numéro 0 de la transaction 9ca8f9... en tant qÕentrée afin de lui
assigner une nouvelle sortie qui enverra le montant vers une nouvelle adresse.

Analysons maintenant en détail cette sortie. Nous utilisons la commande gettxout pour voir les détails
de cette sortie non dépensée (unspent output). Les sorties de transaction sont toujours référencées par
le txid et le vout, qui sont les paramètres que nous passerons à la commande gettxout :

Ce que nous voyons ici est la sortie qui a assigné 50 millibits à notre adresse 1hvz.... Pour dépenser
cette sortie nous créerons une nouvelle transaction. Commençons par créer une adresse vers laquelle
nous enverrons lÕargent :

$ bitcoin-cli getnewaddress
1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb

Nous enverrons 25 millibits vers la nouvelle adresse 1LnfTn... que nous venons de créer dans notre
portefeuille. Dans notre nouvelle transaction, nous dépenserons la sortie de 50 millibits et enverrons
25 millibits vers cette nouvelles adresse. Parce que nous nous devons de dépenser la sortie entière de la
précédente transaction, nous devons également générer de la monnaie. Nous enverrons la monnaie
vers lÕadresse 1hvz... dÕoù les fonds proviennent initialement. Enfin, nous aurons aussi à payer des
frais pour cette transaction. Pour payer les frais, nous réduisons la monnaie de 0,5 millibits, et nous
retournons 24,5 millibits de monnaie. La différence entre la somme des nouvelles sorties (25 mBTC +
24,5 mBTC = 49,5 mBTC) et lÕentrée (50 mBTC) sera récupérée par les mineurs comme frais de
transaction.

Nous utilisons la commande createrawtransaction pour créer cette transaction. Les paramètres que
nous fournissons à la commande createrawtransaction sont lÕentrée de transaction (les 50 millibits non
dépensés de notre transaction confirmée) et les deux sorties de transaction (lÕargent envoyé à la
nouvelle adresse et la monnaie renvoyée vers lÕadresse précédente) :
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La commande createrawtransaction produit une chaine de caractère hexadécimale brute qui encode
les détails de la transaction que nous avons fournis. Vérifions que tout est correct en décodant cette
chain brute en utilisant la commande decoderawtransaction :

Cela semble OK ! Notre nouvelle transaction "consomme" les sorties non dépensée de notre transaction
confirmée pour ensuite les dépenser dans deux sorties, une de 25 millibits vers notre nouvelle adresse
et un de 24,5 millibits comme monnaie renvoyée vers lÕadresse initiale. La différence de 0,5 millibits
représente les frais de transactions et sera créditée au mineur qui trouvera le bloc dans lequel cette
transaction sera incluse.

Comme vous pouvez le remarquer, la transaction contient un champ scriptSig vide car nous ne lÕavons
pas encore signée. Sans signature, cette transaction nÕest pas utilisable; nous nÕavons pas encore
prouvé que nous possédons lÕadresse dÕoù proviennent les sorties non dépensées. En la signant, nous
déverrouillons la sortie et prouvons quÕelle nous appartient afin de pouvoir la dépenser. Nous utilisons
la commande signrawtransaction pour signer la transaction. Elle prend la transaction en tant que
chaine de caractères hexadécimale brute comme paramètre :

TIP
Un portefeuille crypté doit être déverrouillé de pouvoir signer une transaction car le fait
de signer une transaction nécessite lÕaccès aux clés secretes du portefeuille.

La commande signrawtransaction retourne une autre transaction au format texte hexadecimal brut.
Nous la décodons pour découvrir ce qui a changé, à lÕaide de la commande decoderawtransaction :

Maintenant les entrée utilisées par la transaction contiennent un valeur scriptSig, qui correspond à la
signature numérique prouvant quÕelles appartiennent à lÕadresse 1hvz... et déverrouillant la sortie afin
quÕelle soit dépensée.La signature rend la transaction vérifiable par nÕimporte quel noeud du réseau
bitcoin.

Nous pouvons maintenant soumettre soumettre cette transaction nouvellement crée au réseau. Nous
réalisons cela à lÕaide de la commande sendrawtransaction, qui prend la chaine hexadécimale brute
produite par signrawtransaction en paramètre :

La commande sendrawtransaction renvoie un hash de transaction (txid) tout en soumettant la
transaction au réseau. Nous pouvons désormais effectuer une requête sur cet identifiant de
transaction avec la commande gettransaction :
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{
Ê   "amount" : 0.00000000,
Ê   "fee" : -0.00050000,
Ê   "confirmations" : 0,
Ê   "txid" : "ae74538baa914f3799081ba78429d5d84f36a0127438e9f721dff584ac17b346",
Ê   "time" : 1392666702,
Ê   "timereceived" : 1392666702,
Ê   "details" : [
Ê       {
Ê           "account" : "",
Ê           "address" : "1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb",
Ê           "category" : "send",
Ê           "amount" : -0.02500000,
Ê           "fee" : -0.00050000
Ê       },
Ê       {
Ê           "account" : "",
Ê           "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
Ê           "category" : "send",
Ê           "amount" : -0.02450000,
Ê           "fee" : -0.00050000
Ê       },
Ê       {
Ê           "account" : "",
Ê           "address" : "1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb",
Ê           "category" : "receive",
Ê           "amount" : 0.02500000
Ê       },
Ê       {
Ê           "account" : "",
Ê           "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
Ê           "category" : "receive",
Ê           "amount" : 0.02450000
Ê       }
Ê   ]
}

Comme nous lÕavons fait précédemment, nous pouvons examiner le détail de cette transaction avec les
commandes  getrawtransaction et decodetransaction. Ce commandes nous retourneront exactement la
meme chaine hexadécimale que nous avons produite et décodée auparavant, juste avant de lÕenvoyer
sur le réseau.

Clients alternatifs, Libraries, et Toolkits
en plus du client de référence (bitcoind),dÕautres clients et librairies peuvent être utilisés pour
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interagir avec le réseau bitcoin et ses structures de données. Ils sont implémentés dans différents
languages de programmation et offrent aux développeur des interfaces natives dans leurs languages
de prédilection..

Voici une liste dÕimplémentations alternatives:

libbitcoin

Kit de développement multiplateforme en C++

bitcoin explorer

Outil Bitcoin en ligne de commande

bitcoin server

Client Bitcoin complet et serveur de requêtes

bitcoinj

Une libraire Java complète

btcd

Un client bitcoin complet dans le language Go

Bits of Proof (BOP)

Un implémentation de bitcoin en Java pour lÕentreprise

picocoin

Une implémentation de librairie pour client léger en C

pybitcointools

Une librairie bitcoin en Python

pycoin

Une autre librairie bitcoin en Python

Beaucoup dÕautres librairies existent dans une multitude de languages de programmation et de
nouvelles sont crées au fil du temps.

Libbitcoin et le Bitcoin Explorer

La librairie libbitcoin est un kit de développement multiplateforme en C++ qui supporte la client lourd
libbitcoin-server et lÕoutil en ligne de commande Bitcoin Explorer (bx).

Les commande de bx offrent les mêmes fonctionnalités que celles du client bitcoind que nous avons
utilisées dans ce chapitre. Les commandes bx offrent également des outils de gestion de clés qui ne
sont pas présents dans bitcoind, tels que les clés déterministes de type-2, lÕencodage mnémonique de
clé, ainsi que les adresses furtives (sltealth address), le paiement et un moteur de requêtes.
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Installation de Bitcoin Explorer

Pour utiliser le Bitcoin Explorer, vous nÕavez quÕa télécharger lÕexécutable signé correspondant à votre
système. des distributions sont disponibles pour le mainnet et le testnet pour Linux, OS X, et Windows.

Tapez bx sans aucun paramètre pour afficher la liste de commandes disponibles (voir [appdx_bx]).

Bitcoin Explorer fournit également un installateur pour compiler à partir du code source sous Linux et
OS X, ainsi quÕun projet Visual Studio pour Windows.

TIP

Bitcoin Explorer offre tout un tas de commandes très utiles pour encoder et décoder des
adresses et convertir différents formats et représentations. Utilisez les pour explorer les
différents formats tels que Base16 (hexadécimal), Base58, Base58Check, Base64, etc.

Installation de Libbitcoin

La librairie libbitcoin fournit un installateur pour compiler à partir du code source sous Linux et OS X,
ainsi quÕun projet Visual Studio pour Windows. Il est également possible de compiler à lÕaide de lÕoutil
Autotools.

TIP

Le programme dÕinstallation de Bitcoin explorer installe à la fois bx et la librairie
libbitcoin, si vous avez compilé bx depuis les sources vous pouvez donc ignorer cette
étape.

pycoin

La librairie Python pycoin, écrite et maintenue au départ par Richard Kiss, est une librairie Python qui
supporte la manipulation de clés et de transactions bitcoin. Son niveau de support du langage de script
permet même de traiter les transactions non standard.

La librairie pycoin supporte à la fois Python 2 (2.7.x) et Python 3 (après la version 3.3), elle est fournie
avec des utilitaires en ligne de commande très pratiques, ku et tx. Pour installer pycoin 0.42 avec
Python 3 in dans un environnement virtuel (venv), utilisez la commande suivante :
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$ python3 -m venv /tmp/pycoin
$ . /tmp/pycoin/bin/activate
$ pip install pycoin==0.42
Downloading/unpacking pycoin==0.42
Ê Downloading pycoin-0.42.tar.gz (66kB): 66kB downloaded
Ê Running setup.py (path:/tmp/pycoin/build/pycoin/setup.py) egg_info for package
pycoin

Installing collected packages: pycoin
Ê Running setup.py install for pycoin

Ê   Installing tx script to /tmp/pycoin/bin
Ê   Installing cache_tx script to /tmp/pycoin/bin
Ê   Installing bu script to /tmp/pycoin/bin
Ê   Installing fetch_unspent script to /tmp/pycoin/bin
Ê   Installing block script to /tmp/pycoin/bin
Ê   Installing spend script to /tmp/pycoin/bin
Ê   Installing ku script to /tmp/pycoin/bin
Ê   Installing genwallet script to /tmp/pycoin/bin
Successfully installed pycoin
Cleaning up...
$

Voici un exemple de script Python qui sélectionne et dépense quelques bitcoin en utilisant la librairie
pycoin :
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#!/usr/bin/env python

from pycoin.key import Key

from pycoin.key.validate import is_address_valid, is_wif_valid
from pycoin.services import spendables_for_address
from pycoin.tx.tx_utils import create_signed_tx

def get_address(which):
Ê   while 1:
Ê       print("enter the %s address=> " % which, end='')
Ê       address = input()
Ê       is_valid = is_address_valid(address)
Ê       if is_valid:
Ê           return address
Ê       print("invalid address, please try again")

src_address = get_address("source")
spendables = spendables_for_address(src_address)
print(spendables)

while 1:
Ê   print("enter the WIF for %s=> " % src_address, end='')
Ê   wif = input()
Ê   is_valid = is_wif_valid(wif)
Ê   if is_valid:
Ê       break
Ê   print("invalid wif, please try again")

key = Key.from_text(wif)
if src_address not in (key.address(use_uncompressed=False),
key.address(use_uncompressed=True)):
Ê   print("** WIF doesn't correspond to %s" % src_address)
print("The secret exponent is %d" % key.secret_exponent())

dst_address = get_address("destination")

tx = create_signed_tx(spendables, payables=[dst_address], wifs=[wif])

print("here is the signed output transaction")
print(tx.as_hex())

Pour obtenir des exemples utilisant les utilitaires ku et tx, reportez-vous à
[appdxbitcoinimpproposals].
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btcd

btcd est un client bitcoin complet (ful-node) écrit en Go. Il télécharge, valide  et alimente la blockchain
en utilisant exactement les mêmes règles (y compris les bugs) concernant lÕacceptation des blocs que
lÕimplémentation de référence, bitcoind. Il relaie également les nouveaux blocs minés, maintient un
pool de transactions, et relaie les transaction qui ne sont pas encore incluses dans un bloc. Il sÕassure
que toutes les transactions admises dans son pool suivent les règles requises et inclut également une
grand majorité des vérification strictes en se basant sur les exigences des mineurs (transactions
"standard").

Une différence majeure entre btcd et bitcoind est quÕil nÕinclut pas la fonctionnalité de portefeuille, et
cela de façon intentionnelle. Cela veut dire que vous ne pouvez pas effectuer de paiement ou recevoir
des fonds directement via btcd. Cette fonctionnalité est fournie par les projets btcwallet et btcgui, qui
sont en cours de développement. On peut citer dÕautres différences notables entre btcd et bitcoind
comme le support par btcd des requête HTTP POST (comme bitcoind) et les Websockets, et le fait que
les connexions RPC de btcd soient en TLS par défaut.

Installation de btcd

Pour installer btcd sous Windows, téléchargez et lancez le msi disponible sur GitHub, ou lancez la
commande suivante sous Linux, en supposant bien sûr que vous avez installé le langage Go :

$ go get github.com/conformal/btcd/...

Pour mettre à jour la dernière version de btcd, utilisez la commande :

$ go get -u -v github.com/conformal/btcd/...

Configuration de btcd

btcd possède plusieurs options de configuration que vous pouvez lister en utilisant la commande :

$ btcd --help

btcd est fourni avec quelques outils tels que btcctl, qui est un utilitaire en ligne de commande qui peut
être utilisé à la fois pour contrôler et interroger btcd via RPC. Btcd nÕactive pas le serveur RPC par
défaut; vous devez configurer au minimum à la fois un nom dÕutilisateur et un mot de passe dans les
fichiers de configuration suivants :

¥ btcd.conf:
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[Application Options]
rpcuser=myuser
rpcpass=SomeDecentp4ssw0rd

¥ btcctl.conf:

[Application Options]
rpcuser=myuser
rpcpass=SomeDecentp4ssw0rd

Ou alors si vous voulez surcharger les fichiers de configuration depuis la ligne de commande :

$ btcd -u myuser -P SomeDecentp4ssw0rd
$ btcctl -u myuser -P SomeDecentp4ssw0rd

Pour une liste des options disponibles, utilisez la commande suivante :

$ btcctl --help
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Clés, Adresses, Portefeuilles

Introduction
La détention de bitcoins se fait via des clés numériques, des adresses bitcoin_, et des signatures
électroniques. Les clés ne sont pas stockées sur le réseau, mais sont plutôt créées et stockées par les
utilisateurs dans un fichier, sous forme dÕune base de données basique appelée un portefeuille. Les clés
dÕun portefeuille sont totalement indépendantes du protocole bitcoin, et peuvent être créées et gérées
par un logiciel tiers, indépendamment de la blockchain et même sans accès à Internet. Ce sont ces clés
qui rendent possibles de nombreuses caractéristiques intéressantes de bitcoin, comme le contrôle et la
confiance décentralisée, la preuve de propriété, et le modèle de sécurité protégé par la cryptographie.

Une transaction bitcoin doit contenir une signature valide pour être ajoutée à la blockchain, et cette
signature ne peut être construite quÕavec des clefs valides. Cela signifie que nÕimporte quelle personne
possédant une copie de ces clefs peut utiliser les fonds qui y sont associés. Les clefs sont créées par
paires: une clef privée (secrète) et une clef publique. On peut comparer la clef publique à un numéro
de compte en banque, et la clef privée au PIN de la carte bleue (ou à la signature sur un chèque) qui
permet dÕutiliser les fonds de ce compte en banque. En général, on nÕa pas besoin de manipuler
directement ces clefs, qui sont gérées et sauvegardées par le porte-monnaie bitcoin.

Dans les sorties dÕune transaction bitcoin, la clef publique du destinataire est représentée par une
empreinte numérique appelée une addresse bitcoin, et qui est équivalente au nom du bénéficiaire sur
un chèque ("payez à É"). Dans la plupart des cas, une adresse est simplement lÕempreinte dÕune clef
publique, et est donc équivalente à cette clef publique. Mais il est aussi possible de créer des
transactions dont les adresses de destination correspondent à autre chose quÕune simple clef publique,
un script par exemple (voir plus loin dans ce chapitre). Plus généralement, les adresses bitcoin sont
une représentation générique de différents types de destinataires, ce qui permet dÕutiliser les
transactions bitcoins pour de nombreux types de paiement, de la même façon quÕun chèque peut être
utilisé pour payer des personnes privées, des entreprises, retirer de lÕargent liquideÉ Une adresse
bitcoin est simplement la représentation des clefs qui sera visible et partagée, via la blockchain, avec
tout le monde.

Dans ce chapitre, nous allons présenter les portemonnaies, qui gèrent les clefs cryptographiques. Nous
étudierons comment ces clefs sont générées, sauvegardées et utilisées. Nous passerons en revue les
différents formats utilisés représenter pour les clefs privées et publiques, les adresses et les adresses
de script. Puis nous étudierons des usages spécifiques: signature de message, preuve de propriété,
génération dÕadresses personnalisées, portemonnaies papier.

Cryptographie à clef publique et Cryptomonnaies

La cryptographie à clef publique a été inventée dans les années 1970 et est un des fondements de la
sécurité informatique.

Depuis lÕinvention de la cryptographie à clef publique, plusieurs fonctions mathématiques comme
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lÕexponentiation modulaire ou la multiplication en courbes elliptiques ont été découvertes. Ces
fonctions sont pratiquement impossibles à inverser: on peut calculer y = f(x) si on connait x, mais il est
pratiquement impossible de calculer x tel que f(x) = y si on connait y. En utilisant ce type de fonctions,
la cryptographie permet de protéger des secrets et de créer des signatures numériques inviolables.
Bitcoin utilise une cryptographie à clef publique basée sur les courbes elliptiques.

Bitcoin utilise la cryptographie à clef publique pour générer une paire de clefs qui permet de contrôler
les fonds: une clef privée, et une clef publique unique (dérivée à partir de la clef privée). La clef
publique est utilisée pour recevoir des bitcoins, et la clef privée pour signer des transactions qui
dépensent ces bitcoins.

Il existe une relation mathématique entre la clef privée et la clef publique qui permet dÕutiliser la clef
privée pour signer un message, et la clef publique pour valider cette signature sans réveler la clef
privée.

Pour dépenser ses bitcoins, un utilisateur crée une transaction qui contient sa clef publique et une
signature (différente pour chaque transaction, mais génerée avec la même clef privée). Lorsque cette
transaction est publiée sur le réseau bitcoin, tout le monde peut vérifier que la signature est valide et
donc que lÕutilisateur a bien le droit de transférer les fonds.

TIP

La plupart des portemonnaies sauvegardent les clefs publiques et privées ensemble en
tant que paire de clefs. Mais vu quÕil est possible de calculer la clef publique à partir de la
clef privée, on peut aussi se contenter de ne sauvegarder que la clef privée.

Clefs publiques et privées

Un portemonnaie bitcoin gère un ensemble de paires de clefs privé/publique. La clef privée (k) est un
nombre, choisi aléatoirement en général. La clef publique (K) est générée à partir de la clef privée en
utilisant la multiplication en courbes elliptiques, une fonction cryptographique non-inversible. On
utilise ensuite un hash cryptographique pour générer lÕadresse (A) à partir de la clef publique. Dans
cette section, nous commencerons par générer la clef privée, étudierons les bases mathématiques des
courbes elliptiques, calculerons la clef publique à partir de la clef privée, et générerons une adresse
bitcoin à partir de la clef publique. Les relations entre clef privée, clef publique et adresse sont
illustrées ici: Clef privée, clef publique et adresse bitcoin.

Figure 1. Clef privée, clef publique et adresse bitcoin
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Clefs privées

Une privée est juste un nombre choisi au hasard. Pour un utilisateur bitcoin, la possession et la gestion
de ses clefs privées est fondamentale pour le contrôle de ses fonds. La clef privée est utilisée pour créer
des signatures qui permettent de prouver que lÕon détient les fonds que lÕon veut dépenser. Elle doit
impérativement rester secrète: la divulguer revient à perdre le contrôle des fonds quÕelle protège. Elle
doit aussi être sauvegardée: si elle est perdue il sera impossible de la régénérer et les fonds associés
seront perdus aussi.

TIP

"private keys","creating by hand")Une clef privée bitcoin est juste un nombre, que lÕon
peut générer aléatoirement avec un papier, un crayon et une pièce de monnaie: on joue à
pile ou face 256 fois pour générer les 256 bits dÕune clef privée que lÕon pourra importer
dans son portemonnaie. La clef publique pourra ensuite être générée à partir de la clef
privée.

Générer une clef privée à partir dÕun nombre aléatoire

"private keys","generating from random numbers", id="ix_ch04-asciidoc3", range="startofrange")Pour
générer des clefs la première étape, et la plus importante, est de trouver une bonne source dÕentropie,
cÕest-à-dire de données alátoires. Créer une clef bitcoin revient à choisir un nombre aléatoire entre 1 et
2^256. La méthode utilisée importe peu, tant quÕelle est imprévisible et non répétable. Le logiciel
bitcoin utilise le générateur aléatoire du systême dÕexploitation pour générer 256 bits dÕentropie. En
général, ce générateur est initialisé par des données aléatoires produites par lÕutilisateur, par exemple
en lui demandant de bouger sa souris au hasard pendant quelques secondes. Mais pour les vrais
paranoïaques, rien ne vaut une feuille de papier, un stylo et un dé.

Plus précisement, une clef privée peut être nÕimporte quel nombre compris entre 1 et +n - 1, n étant
lÕordre de la courbe utilisée par bitcoin (n = 1.158 * 1077, juste un peu moins que 2256)(voir La
cryptographie sur les courbes elliptiques). Pour créer une telle clef, on choisit un nombre aléatoire à
256 bits et on vérifie quÕil est inférieur à n -1. Programmatiquement, on utilise habituellement une
longue suite de nombres aléatoires générés par une source cryptographiquement sûre, que lÕon hash
avec lÕalgorithme SHA256 (qui produit un résultat sur 256 bits). Si le résultat est pls petit que n - 1, on a
une clef privée valide, sinon on recommence.

TIP

Ne codez pas vous-même un générateur de nombres aléatoires, et nÕutilisez pas les
générateurs les plus simples fournis par votre langage de programmation.Utilisez un
générateur de nombres aléatoires cryptographiquement sûr (CSPRNG en anglais) initialisé
avec une graine (seed) provenant dÕune source ayant suffisamment dÕentropie. Vérifiez
dans la documentation que votre générateur de nombres aléatoires est bien
cryptographiquement sûr. Une implémentation correct du CSPRNG est indispensable pour
la sécurité de vos clefs.

Voici la représentation dÕune clef privée générée aléatoirement au format hexadécimal (256 bits
groupés en 64 nombres sur 4 bits, chaque nombre de 4 bits étant représenté par une lettre).
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1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD

TIP

La taille de lÕespace des clefs bitcoin, 2256, est une nombre gigantesque, qui défie
lÕimagination. Cela correspond environ à 1077 en base 10. On estime que le nombre total
dÕatomes dans lÕunivers visible est à peu près 1080.

Pour générer une nouvelle clef avec le client Bitcoin Core (voir [ch03_bitcoin_client]), utilisez la
commande getnewaddress. Pour des raisons de sécurité, seule la clef publique sera affichée. Utilisez la
commande dumpprivkey pour afficher la clef privée. Elle sera affichée au format WIF (Wallet Import
Format), un format qui contient la clef et une checksum, le tout encodé en base 58. Nous examinerons
ce format en détail au chapitre Les formats de clefs privées. Voici un exemple de génération et
affichage de clefs avec ces 2 commandes:

$ bitcoind getnewaddress
1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy
$ bitcoind dumpprivkey 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy
KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

La commande dumpprivkey ouvre le portemonnaie et extrait la clef privée générée par la commande
getnewaddress. Il est impossible pour bitcoind de retrouver la clef privée à partir de la clef publique, à
moins quÕelles ne soient toutes les 2 stockées dans le portemonnaie.

TIP

La commande dumpprivkey ne génère par la clef privée à partir de la clef publique, cÕest
impossible. Elle va juste retrouver la clef privée déja stockée dans le portemonnaie et
créée par la commande getnewaddress.

On peut aussi utiliser lÕoutil en ligne de commande Bitcoin Explorer (voir [libbitcoin]) pour générer et
afficher des clefs privées avec les commandes seed, ec-new and ec-to-wif:

$ bx seed | bx ec-new | bx ec-to-wif
5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Clefs publiques

La clef public est calculée à partir de la clef privée en utilisant la multiplication en courbes elliptiques,
qui nÕest pas inversible: \(K = k * G\) où k est la clef privée, G est un point particulier appelé le
générateur de la courbe et K est la clef publique. LÕopération inverse Ñcalculer k à partir de K, cÕest-à-
dire résoudre le logarithme discret Ñ est aussi difficile quÕune attaque par force brute: essayer toutes
les valeurs possibles pour k. Afin de montrer comment calculer la clef publique à partir de la clef
privée, nous allons étudier plus précisement la cryptographie en courbes elliptiques.

4



La cryptographie sur les courbes elliptiques

La cryptographie sur les courbes elliptiques est un type pariculier de cyptographie assymétrique (i.e. à
clef privée/clef publique) basée sur le problème du logarithme discret dans le groupe correspondant à
la courbe elliptique (que lÕon définit en introduisant les notions dÕaddition de points sur la courbe, et
de multiplication de point par un entier).

An elliptic curve est un exemple de courbe elliptique, similaire à celle utilisée par bitcoin.

Figure 2. An elliptic curve

Bitcoin utilise une courbe particulière définie dans le standard "secp256k1 curve standard") secp256k1,
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maintenu par le National Institute of Standards and Technology (NIST). La courbe secp256k1 est
définie par la fonction suivante:

ou

_mod p_ (modulo le nombre premier p) signifie que cette courbe est définie sur le corps
fini d'ordre _p_ premier, que l'on écrit aussi latexmath:[\(\mathbb{F}_p\)], ou p =
2^256^ Ð 2^32^ Ð 2^9^ Ð 2^8^ Ð 2^7^ Ð 2^6^ Ð 2^4^ Ð 1, un nombre premier très grand.

Cette courbe nÕest pas définie sur le corps des réels mais sur un corps fini dÕordre premier: elle
ressemble à un ensemble de points répartis au hasard, ce qui la rend difficile à visualiser. Néanmois,
les mathématiques qui régissent cette courbe sont les mêmes que pour les courbes sur les nombre
réels. Par exemple, la figure Cryptographie en courbes elliptiques: visualisation dÕune courbe définie
sur F(p), avec p=17 montre la même courbe mais définie sur un corps dÕordre 17, beaucoup plus petit.
On peut voir la forme de la courbe dans le nuage de points. La courbe secp256k1 utilisée par bitcoin
peut être imaginée comme une forme beaucoup plus complexe sur une grille infiniment plus grande.

Figure 3. Cryptographie en courbes elliptiques: visualisation dÕune courbe définie sur F(p), avec p=17
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Par exemple, voici un point P de coordonnées (x, y) sur la courbe secp256k1. On peut le vérifier avec
Python:

P = (55066263022277343669578718895168534326250603453777594175500187360389116729240,
32670510020758816978083085130507043184471273380659243275938904335757337482424)

Python 3.4.0 (default, Mar 30 2014, 19:23:13)
[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.38)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> p =
115792089237316195423570985008687907853269984665640564039457584007908834671663
>>> x = 55066263022277343669578718895168534326250603453777594175500187360389116729240
>>> y = 32670510020758816978083085130507043184471273380659243275938904335757337482424
>>> (x ** 3 + 7 - y**2) % p
0

En courbes elliptiques il existe un point appelé le "point à lÕinfini" qui correspond en gros à lÕélement
neutre 0 pour lÕaddition. On le représente parfois par x = y = 0 (ce qui ne satisfait pas lÕéquation de la
courbe, mais cÕest un cÕest un cas particulier que lÕon peut facilement traiter à part).

Il existe aussi un opérateur +, appelé "addition," qui se comporte comme lÕaddition sur les nombre
réels que lÕon apprend à lÕécole élementaire. Soit P1 et P2 2 points sur la courbe elliptique, il existe un
troisième point P3 = P1 + P2, qui est aussi sur la courbe elliptique.

DÕun point de vue géométrique, on calcule P3 en traçant une ligne entre P1 et P2. Cette ligne coupe la
courbe elliptique en exactement un point que lÕon appelera P3' = (x, y). On prend alors le symmétrique
de P3' par rapport à lÕaxe des x, ce qui donne P3 = (x, Ðy).

Certains cas particuliers illustrent pourquoi on a besoin du "point à lÕinfini".

Si P1 et P2 sont en fait le même point, la droite entre P1 et P2 est en fait la tangente à la courbe au point
P1. Cette tangente coupe la courbe en exactement un point. Les techniques issues de lÕanalyse
numérique permet de calculer cette tangente. Etonnamment, ces techniques fonctionnent alors que
lÕon se restreint à des points sur la courbes dont les 2 coordonnées sont entières!

Dans certains cas (par exemple si P1 and P2 ont la même abscisse x mais des ordonnnées y différentes),
la ligne qui les relie sera verticale, et P3 sera le "point à lÕinfini".

Si P1 est le "point à lÕinfini," alors P1 + P2 = P2. De même, si P2 est le point à lÕinfini, alors P1 + P2 = P1. Le
"point à lÕinfini" joue le même rôle que lÕélement neutre 0.

Il sÕavère que + est associatif, ce qui signifie que (A + B) + C = A + (B + C). On peut donc écrire A + B + C
sans parenthèses et sans ambiguité.
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Maintenant que nous avons défini lÕaddition, on peut sÕen servir pour définir la multiplication: Pour un
point P sur la courbe elliptique et un entier k, on définit kP = P + P + P + É + P (k fois). Remarque: en
Anglais k est parfois appelé "exponent" (exposant) ce qui peut être une source de confusion.

Generation dÕune clef publique

On part dÕune clef privée sous la forme dÕun nombre aléatoire k, que lÕon multiplie par un point
particulier  de la courbe appelé  point générateur G pour obtenir un autre point sur la courbe: la clef
publique K. Ce point générateur est défini dans le standard secp256k1 et est toujours le même, pour
toutes les clefs:

ou k est la clef privée, G le générateur de la courbe et K la clef publique (qui est un point sur la courbe).
Comme le point générateur est toujours le même, la même clef privée k donnera toujours la même clef
publique K. Il y a lien direct entre k et K, mais on ne peut le calculer que dans un sens, de k vers K. CÕest
pourquoi une clef publique peut être partagée avec tout le monde, sans risque de révéler la clef privée.

TIP
On peut calculer la clef publique à partir de la clef privée, mais pas lÕinverse, car les
fonctions mathématiques utilisées ne sont pas inversibles.

Concrètement, avec la multiplication en courbes elliptiques, on prend la clef privé k générée
précedemment que lÕon multiplie par le générateur G pour obtenir la clef publique K:

K = 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD * G

La clef publique K est le point K = (x,y):

K = (x, y)

avec:

x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Pour visualiser la multiplication dÕun point par un entier, on utilisera une courbe elliptique plus
simple, définie sur les nombres réels - les bases mathématiques sont les mêmes. LÕobjectif est de
trouver le multiple kG du point générateur G, cÕest-à-dire ajouter G à lui-même k fois. En courbes
elliptiques, ajouter un point à lui-même revient à trouver lÕintersection entre la tangente en ce point et
la courbe, et prendre le symétrique par rapport à lÕaxe des x.

Cryptographie sur les courbes elliptiques: visualisation de la multiplication dÕun point G par un entier
k sur une courbe elliptique. montre comment calculer G, 2G, 4G de façon géométrique.
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TIP

La plupart des implémentations bitcoin utilisent la librairie cryptographique OpenSSL
pour la cryptographie en courbes elliptiques. Par exemple, pour calculer la clef privée on
utilise la fonction EC_POINT_mul().

Figure 4. Cryptographie sur les courbes elliptiques: visualisation de la multiplication dÕun point G par un
entier k sur une courbe elliptique.

Adresses Bitcoin
Une adresse bitcoin est une chaîne de caractères (chiffres et lettres) que lÕon peut communiquer avec
nÕimporte quelle personne souhaitant vous envoyer des fonds. Une adresse génerée à partir dÕune clef
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publique commence par "1". Voici un exemple dÕadresse bitcoin:

1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy

Dans une transaction bitcoin, lÕadresse est ce qui corrersponds au "déstinataire" des fonds. LÕadresse
correspond à la ligne "Payez à" sur un chèque. Sur cette ligne, on peut inscrire le nom dÕune personne,
dÕune entreprise, ou même "au porteur" pour que nÕimporte qui puisse encaisser le chèque et lÕutiliser
comme du cash ce qui fait des chèques un moyen de paiement très flexible, beaucoup plus que sÕil
fallait inscrire un numéro de compte en banque. Les adresses bitcoin ont la même flexibilité: elles
peuvent représenter le détenteur dÕune paire de clefs publique/privée, ou autre chose comme un script
de paiement (voir [p2sh]). Pour lÕinstant, examinons le cas le plus simple: une adresse bitcoin dérivée
dÕune clef publique.

On utilise un hash cryptographique pour dériver une adresse bitcoin à partir dÕune clef publique. Un
hash cryptographique est une fonction non inversible qui calcule une empreinte numérique à partir
dÕune donnée de taille quelconque. Les hash cryptographiques sont très utilisés dans bitcoin: pour les
adresses bitcoin, les adresses de script, et la "preuve de travail" (Proof Of Work) utilisée pour le
minage. Les algorithmes de hash utilisés pour transformer une clef publique en adresse bitcoin sont
"Secure Hash Algorithm (SHA)") Secure Hash Algorithm (SHA) et  RACE Integrity Primitives Evaluation
Message Digest (RIPEMD), plus précisement les versions SHA256 et RIPEMD160.

On calcule dÕabord le hash SHA256 de la clef publique K, puis on calcule le hash RIPEMD160 du
résultat, ce qui donne une nombre de 160 bits (20 octets):

K est la clef publique et A lÕadresse bitcoin correspondante.

TIP
Une adresse bitcoin nÕest pas la même chose quÕune clef publique: les adresses sont
calculées à partir des clefs publiques en utilisant une fonction non inversible.

Les adresses bitcoin sont presque toujours affichées en utilisant l' "Base58Check" (voir Encodages
Base58 et Base58Check), qui utilise 58 caractères (un encodage en base 58) et une checksum pour
améliorer la lisibilité, éviter les amibguïtés et les erreurs lors de la saisie et de la copie des adresses.
LÕencodage Base58Check est très utilisé dans bitcoin pour afficher de façon fiable des nombres aux
utilisateurs: adresses bitcoin, clefs privées, clefs chiffrées, hash de scripts. Au prochain paragraphe
nous étudierons lÕencodage Base58Check. Voici un exemple de conversion de clef publique en adresse
bitcoin:  Clef publique vers adresse bitcoin: conversion dÕune clef publique en adresse bitcoin.
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Figure 5. Clef publique vers adresse bitcoin: conversion dÕune clef publique en adresse bitcoin

Encodages Base58 et Base58Check

Pour représenter de grands nombres de façon compacte on utilise souvent en informatique des
représentations en base N avec N > 10. Le système décimal, en base 10, utilise les chiffres de 0 à 9. Mais
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le système hexadécimal, en base 16, utilise aussi les lettres de A à F pour représenter les nombres de
façon plus compacte que le système décimal. LÕencodage Base-64 est encore plus compact et utilise 64
symboles (les 26 lettres de lÕalphabet en minuscule, les 26 lettres en majuscule, les 10 chiffres et 2
symboles supplémentaires: "+" et "/"). Il est très utilisé pour transmettre des données binaires sous
forme de texte, comme des attachements à des emails par exemple. Base58 est un système permettant
dÕencoder des données binaires sous forme de texte, développé pour bitcoin et utilisé par beaucoup
dÕautres crypto-monnaies. Il offre un bon conpromis entre compacité, lisibilité et précention/detection
des erreurs. Base58 utilise un sous-ensemble des symboles de Base64 (lettres minuscules et majuscules,
chiffres), en éliminant les symboles qui peuvent prêter à confusion, notamment avec certains jeux de
caratctères: 0 (zéro) et O (la lettre O), l (L minuscule) et I (i majuscule), et les symboles "\+" et "/". Au
final, il ne reste que les lettres minuscules et majuscules et les chiffres, sans les symboles (0, O, l, I).

Example 1. alphabet Base58 utilisé par bitcoin

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

Base58Check est un format basé sur Base58 très utilisé par bitcoin. Il contient une checksum qui
permet de se protéger contre les fautes de frappes et erreurs de transmissions. Cette checksum, de 4
octets, est ajoutée à la fin des données encodées. Elle est calculée à partir du hash des données
encodées et permet de détecter et éviter les erreurs. Lorsque lÕon décode du Base58Check, on calcule la
checksum et on la compare à celle qui se trouve à la fin des données encodées. Si ce nÕest pas la même,
cela veut dire quÕil y a une erreur et que les données Base58Check sont invalides. Par exemple, cela
permet à un portemonnaie bitcoin de détecter quÕune adresse bitcoin contient une faute de frappe, et
évite ainsi dÕenvoyer des fonds qui seront perdus.

Pour convertir des données binaires (représentant un nombre) au format Base58Check, on ajouter
dÕabord un préfixe  appelé "version" (généralement sur un octet), qui sert à identifier le type de donnée
que lÕon encode. Par exemple, pour une adresse bitcoin le préfixe est 0 (0x00 en hexa), et pour une cle
privée cÕest 128 (0x80 en hexa). La liste des préfixes les plus courants est disponible ici:
[base58check_versions].

Ensuite on calcule un "double hash" SHA256 du préfixe et des données: on hash préfixe + données, et
on hash le résultat.

checksum = SHA256(SHA256(prefix+data))

Cela donne un hash sur 32 octets (256 bits) dont on garde les 4 premiers octets qui constituent notre
checksum. Cette checksum est rajoutée à la fin des données.

Le résultat est donc composé de 3 parties: préfixe, données et checksum. Il est ensuite encodé en base
58 en utilisant lÕalphabet présenté un peu plus haut. LÕencodage Base58Check est illustré ici: encodage
Base58Check: un format basé sur Base58 et comprenant un préfixe et une checksum, pour un
encodage sans ambiguïté des données bitcoin.
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Figure 6. encodage Base58Check: un format basé sur Base58 et comprenant un préfixe et une checksum,
pour un encodage sans ambiguïté des données bitcoin.

Dans bitcoin, la plupart des données que voient les utilisateurs sont encodées en Base58Check afin de
les rendre plus compactes, plus faciles à lire et de détecter les erreurs facilement. LÕoctet de version
permet de distinguer facilement le type de données encodées: le résultat commencera par des
caractères spécifiques, ce qui permet aux utilisateurs de reconnaitre facilement ce qui est encodé et
comment sÕen servir. Par exemple, cÕest ce qui permet de différencier les adresses bitcoin, qui
commencent par un 1, des clefs privées qui, une fois encodées en Base58Check (format WIF),
commencent par un 5. Quelques valeurs de lÕoctet version et du résultat une fois encodé se trouvent
ici: [base58check_versions].

1. préfixes utilisés par Base58Check, et résultat une fois encodé.

Type préfixe Version (hex) résultat Base58

Bitcoin Address 0x00 1
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Pay-to-Script-Hash Address 0x05 3

Bitcoin Testnet Address 0x6F m or n

Private Key WIF 0x80 5, K or L

BIP38 Encrypted Private Key 0x0142 6P

BIP32 Extended Public Key 0x0488B21E xpub

Examinons les étapes du processus de création dÕune adresse bitcoin: on part de la clef privée, on
calcule la clef publique (un point sur la courbe elliptique), puis le double hash et enfin lÕencodage
Base58Check. Le code C++ Création dÕune adresse bitcoin au format Base58Check à partir dÕune clef
privée implémente toutes ces étapes, de la clef privée à lÕadresse bitcoin au format Base58Check. Ce
code utilise la librairie libbitcoin, que nous avons présenté au chapitre [alt_libraries] .

14



Example 2. Création dÕune adresse bitcoin au format Base58Check à partir dÕune clef privée

#include <bitcoin/bitcoin.hpp>

int main()
{
Ê   // Private secret key.
Ê   bc::ec_secret secret;
Ê   bool success = bc::decode_base16(secret,
Ê       "038109007313a5807b2eccc082c8c3fbb988a973cacf1a7df9ce725c31b14776");
Ê   assert(success);
Ê   // Get public key.
Ê   bc::ec_point public_key = bc::secret_to_public_key(secret);
Ê   std::cout << "Public key: " << bc::encode_hex(public_key) << std::endl;

Ê   // Create Bitcoin address.
Ê   // Normally you can use:
Ê   //   bc::payment_address payaddr;
Ê   //   bc::set_public_key(payaddr, public_key);
Ê   //   const std::string address = payaddr.encoded();

Ê   // Compute hash of public key for P2PKH address.
Ê   const bc::short_hash hash = bc::bitcoin_short_hash(public_key);

Ê   bc::data_chunk unencoded_address;
Ê   // Reserve 25 bytes
Ê   //   [ version:1  ]
Ê   //   [ hash:20    ]
Ê   //   [ checksum:4 ]
Ê   unencoded_address.reserve(25);
Ê   // Version byte, 0 is normal BTC address (P2PKH).
Ê   unencoded_address.push_back(0);
Ê   // Hash data
Ê   bc::extend_data(unencoded_address, hash);
Ê   // Checksum is computed by hashing data, and adding 4 bytes from hash.
Ê   bc::append_checksum(unencoded_address);
Ê   // Finally we must encode the result in Bitcoin's base58 encoding
Ê   assert(unencoded_address.size() == 25);
Ê   const std::string address = bc::encode_base58(unencoded_address);

Ê   std::cout << "Address: " << address << std::endl;
Ê   return 0;
}

Ce code utilise toujours la même clef privée, et produit donc toujours la même  adresse: Compilation et
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exécution du code addr.

Example 3. Compilation et exécution du code addr

# Compillation de addr.cpp
$ g++ -o addr addr.cpp $(pkg-config --cflags --libs libbitcoin)
# execution du programme addr
$ ./addr
Public key: 0202a406624211f2abbdc68da3df929f938c3399dd79fac1b51b0e4ad1d26a47aa
Address: 1PRTTaJesdNovgne6Ehcdu1fpEdX7913CK

Les différentes formats de clefs

Il existe différents formats pour représenter les clefs publiques et privées. Les résultats semblent
différents mais il sÕagit toujours de représentations des même nombres. Ces formats sont surtout
utilisés pour rendre les clefs faciles à lire et à recopier, sans risque dÕerreur.

Les formats de clefs privées

Les clefs privées peuvent être représentées de différentes manières, qui correspondent toujours au
même nombre de 256 bits. Les 3 formats les plus utilisés pour les clefs privées sont décrits ici:Formats
dÕencodage des clefs privées

Table 1. Formats dÕencodage des clefs privées

Type Préfixe Description

Hex Aucun 64 caractères (chiffres et lettres
de A à F)

WIF 5 encodage Base58Check:
encodage Base58 avec un
préfixe(version) de 128 et une
checksum de 32 bits

WIF-compressed K ou L Comme au-dessus, mais en
ajoutant le suffixe 0x01 à la clef
avant dÕencoder

Exemple: la même clef, différents formats montre la clef privée encodée avec ces 3 formats/

Table 2. Exemple: la même clef, différents formats

Format Clef Privée

Hex 1e99423a4ed27608a15a2616a2b0e9e52ced330ac53
0edcc32c8ffc6a526aedd
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Format Clef Privée

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2Jpbnk
eyhfsYB1Jcn

WIF-compressed KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf
6YwgdGWZgawvrtJ

Ce sont toutes des représentations différentes du même nombre (la clef privée). Ces formats ont lÕair
différents mais on peut facilement convertir de lÕun vers lÕautre.

On va utiliser la commande  wif-to-ec  de lÕoutil Bitcoin Explorer (voir [libbitcoin]) pour vérifier que les
2 clefs WIF représentent bien la même clef privée:

$ bx wif-to-ec 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

$ bx wif-to-ec KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

Décodage du format Base58Check

LÕoutil Bitcoin Explorer (voir[libbitcoin]) permet dÕécrire facilement des scripts et outils en ligne de
commande pour manipuler les clefs, adresses et transactions bitcoin. On peut utiliser Bitcoin Explorer
pour décoder le format Base58Check en ligne de commande.

On utilise la commande base58check-decode pour décoder la clef non-compressée:

$ bx base58check-decode 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
wrapper
{
Ê   checksum 4286807748
Ê   payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd
Ê   version 128
}

Le résultat comprend: la clef ("payload"), le préfixe WIF (Wallet Import Format) qui vaut 128 (0x80), et
la checksum.

On remarque quÕà la fin de la clef compressée on trouve le suffixe 01, ce qui signifie que la clef
publique correspondant à cette clef privée devra être compressée.
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$ bx base58check-decode KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
wrapper
{
Ê   checksum 2339607926
Ê   payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd01
Ê   version 128
}

Encodage dÕhexadécimal vers Base58Check

Pour encoder vers Base58Check (le contraire de la commande précedente), on utilise la commande
base58check-encode de lÕoutil Bitcoin Explorer (voir[libbitcoin]): on entre la clef privée au format
hexa, suivie du  Wallet Import Format (WIF) préfixe version 128:

bx base58check-encode 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd
--version 128
5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Encodage hexadécimal (clef compressée) vers Basse58Check

Pour encoder une clef privée au format Base58Check en mode "compressé" (voir Clefs privées
compressées), on rajoute le suffixe 01 à la fin de la clef, et on encode:

$ bx base58check-encode
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd01 --version 128
KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

Le résultat, au format WIP compressé, commence par "K". Cela signifie que la clef privée quÕil
représente se termine par le suffixe "01" et quÕelle sera utilisée pour produire des clefs publiques
compressées (voir Clefs publiques compressées).

Les formats de clefs publiques

Il existe aussi différents formats pour les clefs publiques. En particulier, on peut les représenter de
façon compressée ou non-compressée.

Comme nous lÕavons vu précedemment, une clef publique est un point (x,y) sur une courbe elliptique.
On lÕencode généralement avec le préfixe  04 suivi de 2 nombres sur 256 bits:  x et y. Le préfixe 04
permet de distinguer les clefs publiques non-compressées des clefs publiques compressées, qui
commencent par 02 ou 03.

Voici la clef publique générée à partir de la clef privée que nous avons créée plus tôt, représentée en
tant que point de coordonnées x et y:
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x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Voici la même clef publique, sous la forme dÕun nombre sur 520 bits (65 octets, donc 130 caractères en
hexa): le préfixe 04, suivi par x et y, ce qui donne 04 x y:

K = 04F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A<?pdf-
cr?>07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Clefs publiques compressées

<?dbhtml orphans="4"?>Les clefs publiques compressées ont été ajoutées à bitcoin pour réduire la
taille des transactions et donc sauver de l&#8217;espace disque sur les noeuds bitcoin. La plupart des
transactions contiennent une clef publique, nécessaire pour valider que l&#8217;utilisateur a le droit
de dépenser les fonds associés. Chaque clef publique prend 520 bits (prefix \+ x \+ y), ce qui, multiplié
par plusieurs centaines de transactions par bloc, donc plusieurs dizaines de milliers de transactions
par jour, prend beaucoup de place dans la blockchain.

Comme nous lÕavons vu dans la section Clefs publiques, une clef publique est un point (x, y) sur une
courbe elliptique. Cela veut dire que (x, y) est une solution à lÕéquation de la courbe. Donc, si lÕon
connait x, on peut calculer y en résolvant lÕéquation y2 mod p = (x3 + 7) mod p. Cela nous permet de ne
garder que x pour représenter le point, et on économise ains 256 bits. Cela donne une réduction de la
taille des transactions de presque 50%, ce qui avec le temps permet dÕéconomiser beaucoup de place!

Alors que les clef publiques non-compressées commencent par le préfixe 04, les clefs publiques
compressées commencent par 02 ou 03. Il y a 2 préfixes possibles parce quÕil y a toujours 2 solutions
possibles à lÕéquation de la courbe: à gauche du signe = on trouve y2, donc les 2 solutions seront + ou -
la racine carrée de ce quÕil y a à droite du signe =. Visuellement, cela se traduit de la façon suivante: la
courbe (voir An elliptic curve) est symmétrique par rapport à lÕaxe des x: pour chaque point (x, y) sur
la courbe, le point (x, -y) est aussi sur la courbe. Pour pouvoir identifier un point de façon unique, il
nous faut donc x et le signe de y. Mais comme les calculs sur la courbe elliptique se font sur un corps
fini dÕordre p premier, signe et parité sont équivalents: on va donc utiliser le préfixe 02 si y est pair, et
03 si y est impair. Cela nous permettra de recalculer y sans ambiguïté à partir de x. Ce procédé de
compression des clefs publiques est illustré ici: Compression des clefs publiques.
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Figure 7. Compression des clefs publiques

Voici la même clef publique que précedemment, sous forme compressée (33 octets, soit 264 bits ou 66
caractéres en hexa), avec le préfix 03 qui signifie que y est impair:
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K = 03F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A

Cette clef publique compressée correspond à la même clef privée, mais sa représentation est différente
de celle de la même clef publique non-compressée: si on la convertie en adresse bitcoin en utilisant le
double hash (RIPEMD160(SHA256(K))) on obtiendra une autre adresse. Cela peut être une source de
confusion: 2 adresses bitcoin différentes, mais qui correspondent à la même clef publique (sous forme
compressée et non-compressée) et à la même clef privée.

La plupart des clients bitcoin utilisent maintenant les clefs publiques compressées, ce qui permet de
réduire fortement la taille des transactions et donc de la blockchain. Néanmoins, tous les clients ne
supportent pas encore les clefs publiques compressées. Ceux qui les supportent doivent accepter les
transactions provenant de vieux clients qui ne les supportent pas. CÕest particulièrement important
lorsquÕun portemonnaie importe des clefs privées provenant dÕun autre portemonnaie, parce quÕil
devra scanner la blockchain pour y trouver les transactions correspondant à ces clefs. Quelles adresses
bitcoin doit-il chercher ? Les adresses correspondant aux clefs publiques compressées ? Ou celles
correspondant aux clefs publiques non-compressées ? Les 2 sont valides, correspondent aux même
clefs privées, mais restent des adresses différentes!

Pour résoudre ce problème, les portemonnaies récents utilise un format WIF (Wallet Import Format)
différent pour indiquer que les clefs privées ont été utilisées pour générer des clefs publiques
compressées et donc des adresses bitcoin compressées. Cela permet au portemonnaie qui les importe de
distinguer les clefs privées provenant de vieux portemonnaies de celles provenant de portemonnaies
récents, et de rechercher dans la blockchain les transactions correspondant aux clefs publiques
compressées ou non-compressées selon le cas. Nous examinerons ce processus plus en détail dans la
prochaine section.

Clefs privées compressées

Ironiquement, lÕexpression "clef privée compressée" est trompeuse car les clefs privées exportées au
format WIF compressé font un octet de plus que les clef privées "non-compressées", à cause du suffixe
01 ajouté à la fin pour indiquer quÕelles proviennent dÕun portemonnaie récent et doivent être utilisées
pour générer des clefs publiques compressées. En fait, les clefs privées ne sont pas compressées (et ne
peuvent pas être compressées). LÕexpression "clef privée compressée" signifie en fait "la clef publique
issue de cette clef privée doit être compressée". Pour éviter de semer la confusion, on appellera ce
format dÕexport "WIF compressé" ou "WIF" et on évitera dÕutiliser le terme "compressé" pour les clefs
privées.

Attention, ces formats en sont pas interchangeables. Les portemonnaies récents qui utilisent des clefs
publiques compressées vont toujours exporter les clefs privées au format WIF compressé
(commençant par K ou L). Les portemonnaie plus ancien ne supportant pas les clefs publiques
compressées exportent les clefs privées au format WIF (commençant par un 5). LÕobjectif est de
permettre au portemonnaie qui importe les clefs de savoir sÕil doit rechercher dans la blockchain des
adresses et clefs publiques compressées ou non-compressées.

Si un portemonnaie bitcoin supporte les clefs publiques compressées, il les utilisera dans toutes les
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transactions. Les clefs privées gérées par le portemonnaie seront utilisées pour générer des clefs
publiques (i.e. des points sur la courbe) compressées, qui elles-mêmes généreront des adresses
compressées, que le retrouvera dans les transactions. LorsquÕun portemonnaie qui supporte les clefs
publique compressées exporte des clefs privées, il utilise un format WIF modifié: lÕoctet 01 est ajouté à
la fin de la clef privée, qui est ensuite encodée au format Base58Check: on appelle ce format "WIF
compressé", et le résultat commence par K ou L, au lieu de "5" comme cÕest le cas pour les clefs
exportées au format WIF (non compressé) par de vieux portemonnaie.

Exemple: la même clef, différents formats montre  la même clef, encodée aux formats WIF et WIF
compressé.

Table 3. Exemple: la même clef, différents formats

Format Clef Privée

Hex 1E99423A4ED27608A15A2616A2B0E9E52CED330A
C530EDCC32C8FFC6A526AEDD

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2Jpbnk
eyhfsYB1Jcn

Hex-compressé 1E99423A4ED27608A15A2616A2B0E9E52CED330A
C530EDCC32C8FFC6A526AEDD_01_

WIF-compressed KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf
6YwgdGWZgawvrtJ

TIP

Le terme "clef privée compressée" est mal choisi! Les clefs privées ne sont pas
compressées, mais les clefs publiques qui en sont dérivées doivent être compressées ainsi
que les adresses bitcoin correspondantes. Ironiquement, une clef privée au format "WIF
compressé" fait un octet de plus à cause du suffixe 01 ajouté à la fin.

Implementation des clefs et adresses en Python
La librairie bitcoin la plus complète en Python est pybitcointools développée par  Vitalik Buterin.
LÕexempleGénération et affichage de clefs et adresses avec la librairie pybitcointools utilise la librairie
pybitcointools (importée en tant que "bitcoin") pour générer et afficher des clefs et adresses avec
différents formats.

Example 4. Génération et affichage de clefs et adresses avec la librairie pybitcointools

import bitcoin

# Generate a random private key
valid_private_key = False
while not valid_private_key:
Ê   private_key = bitcoin.random_key()
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Ê   decoded_private_key = bitcoin.decode_privkey(private_key, 'hex')
Ê   valid_private_key =  0 < decoded_private_key < bitcoin.N

print "Private Key (hex) is: ", private_key
print "Private Key (decimal) is: ", decoded_private_key

# Convert private key to WIF format
wif_encoded_private_key = bitcoin.encode_privkey(decoded_private_key, 'wif')
print "Private Key (WIF) is: ", wif_encoded_private_key

# Add suffix "01" to indicate a compressed private key
compressed_private_key = private_key + '01'
print "Private Key Compressed (hex) is: ", compressed_private_key

# Generate a WIF format from the compressed private key (WIF-compressed)
wif_compressed_private_key = bitcoin.encode_privkey(
Ê   bitcoin.decode_privkey(compressed_private_key, 'hex'), 'wif')
print "Private Key (WIF-Compressed) is: ", wif_compressed_private_key

# Multiply the EC generator point G with the private key to get a public key point
public_key = bitcoin.fast_multiply(bitcoin.G, decoded_private_key)
print "Public Key (x,y) coordinates is:", public_key

# Encode as hex, prefix 04
hex_encoded_public_key = bitcoin.encode_pubkey(public_key,'hex')
print "Public Key (hex) is:", hex_encoded_public_key

# Compress public key, adjust prefix depending on whether y is even or odd
(public_key_x, public_key_y) = public_key
if (public_key_y % 2) == 0:
Ê   compressed_prefix = '02'
else:
Ê   compressed_prefix = '03'
hex_compressed_public_key = compressed_prefix + bitcoin.encode(public_key_x, 16)
print "Compressed Public Key (hex) is:", hex_compressed_public_key

# Generate bitcoin address from public key
print "Bitcoin Address (b58check) is:", bitcoin.pubkey_to_address(public_key)

# Generate compressed bitcoin address from compressed public key
print "Compressed Bitcoin Address (b58check) is:", \
Ê   bitcoin.pubkey_to_address(hex_compressed_public_key)

Execution de key-to-address-ecc-example.py est le résultat de lÕexecution de ce code.
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Example 5. Execution de key-to-address-ecc-example.py

Un exemple dÕutilisation des courbes elliptiques pour les clefs bitcoin  est un autre exemple basé sur la
librairie ECDSA Python pour la cryptographie en courbes  elliptiques, sans avoir besoin de librairies
bitcoin spécifiques.

Example 6. Un exemple dÕutilisation des courbes elliptiques pour les clefs bitcoin

import ecdsa
import os
from ecdsa.util import string_to_number, number_to_string

# secp256k1, http://www.oid-info.com/get/1.3.132.0.10
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp(_p, _a, _b)
generator_secp256k1 = ecdsa.ellipticcurve.Point(curve_secp256k1, _Gx, _Gy, _r)
oid_secp256k1 = (1, 3, 132, 0, 10)
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1,
oid_secp256k1)
ec_order = _r

curve = curve_secp256k1
generator = generator_secp256k1

def random_secret():
Ê   convert_to_int = lambda array: int("".join(array).encode("hex"), 16)

Ê   # Collect 256 bits of random data from the OS's cryptographically secure random
generator
Ê   byte_array = os.urandom(32)

Ê   return convert_to_int(byte_array)

def get_point_pubkey(point):
Ê   if point.y() & 1:
Ê       key = '03' + '%064x' % point.x()
Ê   else:
Ê       key = '02' + '%064x' % point.x()
Ê   return key.decode('hex')

def get_point_pubkey_uncompressed(point):
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Ê   key = '04' + \
Ê         '%064x' % point.x() + \
Ê         '%064x' % point.y()
Ê   return key.decode('hex')

# Generate a new private key.
secret = random_secret()
print "Secret: ", secret

# Get the public key point.
point = secret * generator
print "EC point:", point

print "BTC public key:", get_point_pubkey(point).encode("hex")

# Given the point (x, y) we can create the object using:
point1 = ecdsa.ellipticcurve.Point(curve, point.x(), point.y(), ec_order)
assert point1 == point

Installation de la librairie Python ECDSA et execution du script ec_math.py est le résultat de lÕexecution
de ce script.

NOTE

Cet exemple utilise os.urandom, qui se base sur un générateur de nombres aléatoires
cryptographiquement sûr (CSRNG) fourni par le systême dÕexploitation. Sur un OS de
type UNIX comme Linux, il les lit depuis le fichier /dev/urandom, et sous Windows il
appelle CryptGenRandom(). Si aucun générateur convenable nÕest disponible,
lÕexception NotImplementedError est lancée. Bien que le générateur aléatoire utilisé ici
soit suffisant pour un exemple, il nÕest pas suffisamment sécurisé pour générer des
clefs bitcoin pour un systême en production.
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Example 7. Installation de la librairie Python ECDSA et execution du script ec_math.py

$ # Installation du gestionnaire de paquets Python PIP
$ sudo apt-get install python-pip
$ # Installation de la librairie Python ECDSA
$ sudo pip install ecdsa
$ # execution du script
$ python ec-math.py
Secret:
38090835015954358862481132628887443905906204995912378278060168703580660294000
EC point:
(70048853531867179489857750497606966272382583471322935454624595540007269312627,
105262206478686743191060800263479589329920209527285803935736021686045542353380)
BTC public key: 029ade3effb0a67d5c8609850d797366af428f4a0d5194cb221d807770a1522873

Portemonnaie
Les portemonnaie sont des conteneurs de clefs privées, implémentés la plupart de temps sous forme
de fichiers structurés ou de base de données très simples. Il est aussi possible dÕutiliser un  algorithme
de génération de clef déterministe. Chaque clef privée est dérivée, grâce à une fonction à sens-unique,
dÕune clef précedente, créant ainsi une chaîne de clefs. Il suffit ainsi de connaitre la première clef
(aussi appelée clef maître) pour recréer la chaîne et générer toutes les clefs. Dans ce chapitre nous
examinerons différentes méthodes de génération de clef et comment elles sont utilisées par les
portemonnaie.

TIP

Les portemonnaie bitcoin contiennent des clefs, pas de lÕargent. Chaque utilisateur a son
portemonnaie qui gère ses clefs: en fait, ce sont des "trousseau de clefs" qui gèrent des
paires de clefs publiques/privées (voir Clefs publiques et privées). Les utilisateurs signent
des transactions avec leurs clefs, prouvant ainsi quÕils ont le droit de dépenser les sorties
des transactions qui leur appartiennent (leurs "bitcoins"). Dans la blockchain, les bitcoins
correspondent aux sorties des transactions, que lÕon appelle souvent "vout" ou "txout".

Portemonnaie non-déterministes (aléatoires)

Dans les premiers clients bitcoin, les portemonnaie généraient leurs clefs privées de façon aléatoire. Ce
type de portemonnaie est appelé portemonnaie non-déterministe de type 0. Par exemple, le  client
Bitcoin Core génère 100 clefs aléatoires lors de sa première utilisation, et génère ensuite dÕautres clefs
si nécessaire, afin que chaque clef ne soit utilisée quÕune seule fois. On surnomme ce type de
portemonnaie "Just un Paquet de Clefs" (JBOK: Just a Bunch Of Keys" en anglais). Ils sont difficiles et
fastidieux à gérer (sauvegarde, import de clefs, É) et on les remplace de plus en plus par des
portemonnaie déterministes.  Le problème avec les clefs aléatoires est quÕil faut toutes les sauvegarder,
sinon les fonds associés sont perdus. Il faut donc sauvegarder son portemonnaie très souvent, surtout
si on génère beaucoup de clefs. CÕest peu compatible avec la bonne pratique qui est de nÕutiliser
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chaque adresse que pour une seule transaction. Réutiliser les mêmes adresses crée des liens entre elles
et les transactions qui les utilisent, ce qui pose un problème de confidentialité. Les portemonnaie non-
déterministyes de type 0 sont un mauvais choix, surtout si lÕon veut éviter de réutiliser les mêmes
adresses (ce qui oblige à générer beaucoup de clefs, et sauvegarder son portemonnaie fréquemment).
Bien que le client Bitcoin Core intègre un portemonnaie de type 0, son utilisation est déconseillée par
les développeurs de Bitcoin Core. Portemonnaie non déterministe (aléatoire) de type 0: un ensemble de
clefs générées aléatoirement illustre un portemonnaie non-déterministe, qui contient un ensemble de
clefs aléatoires.

Portemonnaies déterministes

Les portemonnaie déterministes contiennent des clefs privées qui sont toutes dérivées dÕune même
"graine" (valeur dÕinitialisation) grâce à une fonction de hash à sens unique. Les clefs privées sont
dérivées à partir de cette graine (qui est un nombre aléatoire) et dÕautres données, telles que lÕindex de
la clef ou son "code chaîne" ("chaincode", voir  Portemonnaie déterministe hiérarchique
(BIP0032/BIP0044)). La graine est suffisante pour retrouver toutes les clefs dÕun portemonnaie
déterministe, et on peut donc ne faire qÕune seule sauvegarde, au moment de la création du
portemonnaie. On nÕa besoin que de cette graine pour exporter/importer les clefs, ce qui facilite les
transferts entre différents portemonnaie.

Figure 8. Portemonnaie non déterministe (aléatoire) de type 0: un ensemble de clefs générées
aléatoirement
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Code mnémonique

Pour représnter la graine utilisée par un portemonnaie déterministe, qui est un nombre aléatoire, on
utilise un encodage basé sur une suite de mots appelé codes mnémoniques. Connaitre cette suite de
mot est suffisant pour retrouver la graine, et donc toutes les clefs du portemonnaie. Lors de sa
création, un portemonnaie déterministe va afficher une suite de 12 à 24 codes mnémoniques, que
lÕutilisateur va conserver comme sauvegarde du portemonnaie. Elle lui permettra de re-créer les même
clefs, avec nÕimporte quel portemonnaie compatible. Les codes mnémoniques sont plus facile à lire et
écrire que des suites de nombres aléatoires, ce qui les rend plus faciles à utiliser pour sauvegarder les
portemonnaie.

Les codes mnémoniques sont définis dans le BIP 39  (voir[bip0039]), qui nÕest pas encore
définitevement accepté mais a encore le status de "proposition". Il existe un autre standard
implémenté, avant la rédaction de BIP39, par le portemonnaie  Electrum et basé sur dÕautres codes
mnémoniques. BIP0039  est utilisé par le portemonnaie Trezor et par dÕautres implémentations, mais
nÕest pas compatible avec le portemonnaie Electrum.

Voici comment BIP0039 défini la création dÕune graine et de son code mnémonique:

1. Générer un nombre aléatoire (entropie) de 128 à 256 bits.

2. Générer une checksum en prenant les premiers bits du hash SHA256 de ce nombre

3. Ajouter cette checksum à la fin du nombre

4. Découper le résultat en morceaux de 11 bits, et utiliser chaque morceau comme index dans un
dictionnaire de 2048 mots prédéfinis

5. le résultat, qui est une suite de 12 à 24 mots, représente notre code mnémonique.

Codes mnémoniques: entropie et nombre de mots illustre le lien entre la taille du nombre aléatoire
(entropie) et le nombre de mots du code mnémonique.

Table 4. Codes mnémoniques: entropie et nombre de mots

Entropie (bits) Checksum (bits) Entropie+checksum Nombre de mots

128 4 132 12

160 5 165 15

192 6 198 18

224 7 231 21

256 8 264 24

Le code mnémonique représente un nombre de 128 à 256 bits, qui est utiliser pour dériver une
nombre plus long (512 bits) grâce à la fonction de dérivation de clef PBKDF2. Le résultat est utilisé
comme graine pour initialiser un portemonnaie déterministe et calculer toutes ses clefs.

Les tables <xref linkend="table_4-6" xrefstyle="select: labelnumber"/> et <xref linkend="table_4-7"
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xrefstyle="select: labelnumber"/> illustre quelques exemples de clefs et de codes mnémoniques utilisés
pour les générer

Table 5. Code mnémonique (entropie) sur 128 bits et graine correpondante

Entropie (128 bits) 0c1e24e5917779d297e14d45f14e1a1a

Code mnémonique (12 mots) army van defense carry jealous true garbage
claim echo media make crunch

Graine (512 bits) 3338a6d2ee71c7f28eb5b882159634cd46a898463e9
d2d0980f8e80dfbba5b0fa0291e5fb88
8a599b44b93187be6ee3ab5fd3ead7dd646341b2cd
b8d08d13bf7

Table 6. Code mnémonique sur 256 bits et graine correpondante

Entropie (256 bits) 2041546864449caff939d32d574753fe684d3c947c33
46713dd8423e74abcf8c

Code mnémonique (24 mots) cake apple borrow silk endorse fitness top denial
coil riot stay wolf luggage oxygen faint major edit
measure invite love trap field dilemma oblige

Graine (512 bits) 3972e432e99040f75ebe13a660110c3e29d131a2c80
8c7ee5f1631d0a977fcf473bee22
fce540af281bf7cdeade0dd2c1c795bd02f1e4049e20
5a0158906c343

Portemonnaie déterministe hiérarchique (BIP0032/BIP0044)

Les portemonnaie déterministes ont été créés pour faciliter la dérivation de multiples clef privées à
partir dÕune "graine" unique. Les portemonnaies déterministes les plus avancés sont les portemonnaie
déterministes hiérarchiques souvent appelés portemonnaie HD (HD pour Hierarchical Deterministic en
anglais), définis par le standard BIP0032. Les portemonnaie déterministes hiérarchiques permettent de
gérer des arbres de clefs: une clef parent peut générer une série de clefs filles, qui peuvent elles-
mêmes générer une série de clefs filles, et ainsi de suite sans limite de profondeur. Cette structure en
arbre est illustrée ici: Portemonnaie déterministe hiérarchique de type 2: un arbre de clefs généré à
partir dÕune graine unique..
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Figure 9. Portemonnaie déterministe hiérarchique de type 2: un arbre de clefs généré à partir dÕune graine
unique.

TIP
Si vous développez un portemonnaie bitcoin, faites un portemonnaie HD et respectez les
standard BIP0032 et BIP0044.

Les portemonnaie HD offrent 2 avantages significatifs par rapport aux portemonnaie aléatoire.
Premierement, les clefs sont gérées sous forme dÕarbre, dont la structure peut être modelée sur la
structure opérationnelle dÕune entreprise: une branche peut être utilisée pour recevoir des paiements,
une autre pour gérer le change produit par lÕenvoi de fonds. On peut aussi faire correspondre les
branches aux filialies, aux différents departements ou entités fonctionnelles, ou à différentes
catégories comptables.

Le deuxième avantage des portemonnaie HD est que lÕon peut gérer des arbres de clefs publiques sans
connaitre les clefs privées correspondantes. On peut donc les utiliser pour recevoir des paiements sur
des serveurs non sécurisés, en utilisant une nouvelle clef publique pour chaque transaction. Les clefs
publiques nÕont pas besoin dÕêtre préchargées ou calculées à lÕavance, mais le serveur ne connait pas
les clefs privées qui servent à dépenser les fonds reçus.

création dÕun portemonnaie HD à partir dÕune graine

Les portemonnaie HD sont initialisés avec une  graine racine unique, qui est un nombre aléatoire de
128, 256 ou 512 bits. Tout le reste est dérivé de cette graine, ce qui permet de le recréer entièrement
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dans un autre portemonnaie compatible HD. Il est ainsi très facile de sauvegarder, restaurer, exporter
et importer des portemonnaie HD, même sÕils contiennent des milliers ou des millions de clefs,
simplement en transférant la graine racine.  Cette graine est souvent représentée sous la forme dÕune
liste de mots mnémoniques, comme expliqué dans la section précédente  Code mnémonique, ce qui la
rend plus facile à recopier.

La création dÕune clef maître et dÕun code chaîne pour un portemonnaie HD est illustré ici: Création
dÕune clef maître et dÕun code chaîne à partir dÕune graine racine.

Figure 10. Création dÕune clef maître et dÕun code chaîne à partir dÕune graine racine

La graine racine est hashée avec lÕalgorithme HMAC-SHA512, et le résultat est utilisé pour créer une
clef maître (m) et un code chaîne maître.  On utilise ensuite la multiplication en courbes elliptiques pour
générer une clef publique maître (M) à partir de (m), comme vu précédemment: M = m * G. Le code
chaîne sert de source dÕentropie pour les fonctions de dérivation de clefs filles à partir de clefs parents,
comme nous le verrons dans la prochaine section.

Dérivation des clefs privées filles

Les portemonnaie hiérarchiques déterministes utilisent une fonction de dérivation de clef fille (CKD:
Child Key Derivation en anglais) pour dériver les clefs filles des clefs parents.

La fonction de dérivation de clef fille est basé sur une fonction de hash à sens unique qui combine:

¥ Une clef parent publique (clef ECDSA compressée) ou privée

¥ Une graine appelée code chaîne (256 bits)

¥ Un numéro dÕindex (entier sur 32 bits)

Le code chaîne permet dÕintroduire des données pseudo-aléatoires dans le processus de dérivation,
afin que lÕindex ne soit pas suffisant pour dériver dÕautres clefs. Ainsi, avoir une clef fille ne permet
pas de trouver ses soeurs, à moins de connaître le code chaîne. Le code chaîne initial (à la racine de
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lÕarbre) est créé à partir de données aléatoires, et les codes chaines utilisés pour les clefs filles sont
dérivés du code chaine parent.

Ces trois éléments sont combinés et hashés pour générer les clefs filles de la façon suivante:

La clef publique parent, le code chaîne et lÕindex sont hashés avec lÕalgorithme HMAC-SHA512 qui
produit un hash sur 512 bits. Ce hash est coupé en 2 moitiés de 256 bits. La moitié de droite deviendra
le code chaine de la clef fille, la moitié de gauche et lÕindex sont ajoutés à la clef privée parent pour
donner la clef privée fille. Dérivation dÕune clef privée fille à partir dÕune clef privée parent, illustre ce
processus, avec lÕindex 0 pour produire la "0ieme" (première) clef fille de la clef parent.

Figure 11. Dérivation dÕune clef privée fille à partir dÕune clef privée parent

En incrémentant lÕindex, on peut créer des séries de clefs filles: fille 0, fille 1, fille 2, etc. Chaque clef
parent peut avoir 2 milliards de clefs filles.

On peut répéter ce processus à lÕinfini: à chaque niveau de lÕarbre, chaque clef fille devenant à son tour
une clef parent et peut générer dÕautres clefs filles, et ainsi de suite.

Utilisation des clefs filles

Il est impossible de distinguer les clefs privées filles de clefs non-déterministes (aléatoires). Comme la
fonction de dérivation est une fonction à sens unique, on ne peut pas retrouver la clef parent à partir
de la clef fille. On ne peut pas non plus retrouver ses soeurs. Si vous connaissez la nième clef fille, vous
ne pouvez pas retrouver la clef fille n-1 ou n+1 ou nÕimporte quelle autre. Pour calculer les clefs filles il
est indispensable de connaître la clef parent et le code chaine. Sans celui-ci, on ne pourra pas non plus
calculer les petits-enfants du parent: pour calculer une nouvelle branche il faut la clef privée fille et
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son code chaine.

Alors que peut-on faire avec la clef fille seule ? On peut créer une clef publique et une adresse bitcoin.
On peut alors utiliser la clef pour signer des transactions afin de dépenser les fonds reçus à cette
adresse.

TIP

On ne peut pas distinguer des clefs privées dérivées, les clefs publiques associées et les
adresses bitcoin correspondantes de clefs et adresses générées aléatoirement. Seule le
portemonnaie HD qui les a créées connait lÕarbre de clefs dont elles font partie. Une fois
créées, elles fonctionnent exactement comme des clefs "normales".

Clefs étendues

Comme vu précédemment, la fonction de dérivation de clefs permet de créer des clefs filles à partir de
nÕimporte quelle position dans lÕarbre de clefs en combinant trois éléments: une clef, un code chaine,
et lÕindex de la clef que lÕon veut dériver. Les deux éléments essentiels sont la clef et le code chaine.
LÕensemble clef + code chaine est appelé une clef étendue. Mais on pourrait aussi lÕappeler "clef
extensible" car on peut lÕutiliser pour dériver de nouvelles clefs.

Les clefs étendues sont stockées et représentées sous la forme dÕune chaine de 512 bits: 256 bits pour la
clef, suivis de 256 bits pour le code chaine. Il y a 2 sortes de clefs étendues: les clefs privées étendues
(composée dÕune clef privée et dÕun code chaine) que lÕon peut utiliser pour dériver des clefs privées
filles (et ensuite les clefs publiques filles associées), et les clefs publiques étendues (composées dÕune
clef publique et dÕune code chaine) que lÕon peut utiliser pour dériver des clefs public filles, comme
illustré ici: Generation dÕune clef publique.

On peut voir une clef étendue comme la racine dÕune branche dans lÕarbre de clefs dÕun portemonnaie
HD. A partir de cette racine on peut dériver le reste de la branche. Avec une clef privée  étendue on
peut calculer une branche complète, alors quÕavec une clef publique étendue on ne peut calculer
quÕune branche de clefs publiques.

TIP

Une clef étendue est composée dÕune clef privée ou publique et dÕun code chaine. On peut
lÕutiliser pour calculer une branche de lÕarbre de clefs. Si on donne cette clef étendue, on
donne lÕaccès à lÕensemble de cette branche.

Les clefs étendues sont encodées au format Base58Check pour être facilement exportées/importées
depuis différents portemonnaie compatibles BIP0032. On utilise un préfixe version spécifique, ce qui
fait que le résultat commence par "xprv" et "xpub" afin de rendre les clefs facilement identifiables. Les
clefs étendues font 512 bits, et elles sont encodées avec des informations supplémentaires (profondeur,
identifiant du parent, indexÉ) ce qui donne un encodage Base58Check beaucoup plus long que ce que
nous avons vu jusquÕà présent.

Voici un exemple dÕencodage dÕune clef privée étendue au format Base58Check:
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xprv9tyUQV64JT5qs3RSTJkXCWKMyUgoQp7F3hA1xzG6ZGu6u6Q9VMNjGr67Lctvy5P8oyaYAL9CAWrUE9i6GoNMK
Uga5biW6Hx4tws2six3b9c

Voic la clef publique étendue correspondante au format Base58Check:

xpub67xpozcx8pe95XVuZLHXZeG6XWXHpGq6Qv5cmNfi7cS5mtjJ2tgypeQbBs2UAR6KECeeMVKZBPLrtJunSDMst
weyLXhRgPxdp14sk9tJPW9

Dérivation des clef publiques filles

Comme évoqué précédemment, un des points forts des portemonnaie hiérarchiques déterministes est
la possibilité de dériver des clefs publiques filles depuis une clef publique parent, sans connaitre les
clefs privées. On a ainsi deux façons de dériver les clefs publiques filles: depuis les clefs privées filles,
ou depuis la clef publique parent.

On peut ainsi utiliser une clef publique étendue pour dériver toutes les clefs publiques (et seulement les
clefs publiques) de la branche dont elle est la racine.

On peut ainsi déployer des clefs de façon extrêmement sécurisée: sur un serveur (ou une application)
on ne déploie que la clef publique étendue, mais aucune clef privée. On peut ainsi créer une infinité de
clefs publiques et dÕadresses bitcoin, mais sans pouvoir dépenser les fonds associés. En parallèle, on
déploie la clef privée étendue sur un autre serveur sécurisé qui pourra dériver les clefs privées
nécessaires pour signer les transactions et dépenser les fonds.

Ce type de déploiement est souvent utilisé dans les solutions de type eCommerce: on déploie la clef
publique étendue sur le serveur web de lÕapplication. En utilisant la fonction de dérivation de clef
publique, le serveur web peut dériver une nouvelle adresse bitcoin pour chaque transaction (par
exemple pour le panier de lÕutilisateur). Il nÕy a aucune clef privée sur le serveur web, donc aucun
risque de vol ou piratage. Sans les portemonnaie HD, il faudrait dÕabord générer des milliers dÕadresses
bitcoin sur un autre serveur et ensuite les pré-charger sur le serveur web: ce serait fastidieux et il
faudrait sans cesse vérifier que le serveur nÕa pas épuisé toutes ses clefs.

Ce scenario est aussi utilisé pour le stockage de bitcoin offline ("cold storage") et pas les portemonnaie
matériels. La clef privée étendue est sauvegardée sur papier ou dans un portemonnaie matériel
(comme le portemonnaie matériel Trezor), et la clef publique étendue peut être utilisée en mode
connecté pour générer autant dÕadresses bitcoin que lÕon veut. Pour dépenser les fonds, on utilise la
clef privée étendue soit via un client en mode déconnecté soir en faisant signer les transactions par le
portemonnaie matériel. La dérivation de clefs publiques filles à partir dÕune clef publique parent est
illustrée ici: Dérivation dÕune clef publique fille à partir dÕune clef publique étendue parent
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Figure 12. Dérivation dÕune clef publique fille à partir dÕune clef publique étendue parent

Dérivation de clefs filles durcies

Pouvoir dériver un arbre de clefs publiques à partir dÕune clef publique étendue est très utile, mais il y
a un problème de sécurité. Une clef publique étendue ne permet pas de calculer les clefs privées filles,
mais elle contient le code chaine: si on connait une clef privée fille, on peut lÕutiliser pour retrouver les
autres. Avec une seule clef privée fille, et le code chaine de la clef parent, on peut retrouver toutes les
clefs filles. Et pire encore: on peut aussi retrouver la clef privée parent.

Pour remédier à ce problème, les portemonnaie HD ont une autre fonctione de dérivation, appelée
fonction de dérivation durcie, qui "casse" le lien entre la clef publique parent et le code chaine de la
clef fille. Pour calculer le code chaine, la fonction de dérivation durcie utilise la clef privée parent (au
lieu de la clef publique parent). Cela crée une "barrière" au milieu de la chaine parent/enfant, car ce
code chaine ne peut pas être utilisé pour compromettre une clef parent ou la soeur dÕune clef privée.
La fonction de dérivation durcie est quasiment identique à la fonction de dérivation de clef privée
normale, la seule différence est que lÕon hash la clef privée parent au lieu de la clef publique parent,
comme illustré ici: Dérivation dÕune clef durcie; on nÕutilise plus la clef publique parent.
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Figure 13. Dérivation dÕune clef durcie; on nÕutilise plus la clef publique parent

La clef privée et le code chaine calculés par la fonction de dérivation durcie sont complétement
différent de ceux obtenus avec la fonction de dérivation normale, et on peut les utiliser pour générer
des clefs publiques étendues qui ne sont pas vulnérables, car leur code chaine ne peut pas être utilisé
pour retrouver des clefs privées. La fonction de dérivation durcie crée un "trou" dans lÕarbre de clefs
juste au-dessus des clefs publiques étendues.

Pour faire simple: si vous voulez utilisez une clef publique étendue pour dériver un arbre de clefs
publiques sans prendre le risque dÕexposer vos clefs par une fuite du code chaine, vous devriez la
dériver dÕune clef durcie et pas dÕune clef normale. La bonne pratique est la suivante: le premier
niveau de clefs dérivées dÕune clef maitre est toujours calculé avec la fonction de dérivation durcie,
pour éviter de compromettre la clef maitre.

Numérotation des clefs normales et durcies

LÕindex, ou numéro de clef, utilisé par la fonction de dérivation est un entier sur 32 bits. Pour pouvoir
distinguer facilement les clefs normales des clefs durcies, la plage des index est coupée en 2: de 0 à 2
31Ð1 (0x0 to 0x7FFFFFFF) pour les  index normaux, et de  231 and 232Ð1 (0x80000000 to 0xFFFFFFFF)
pour les index durcis.  Donc, si lÕindex dÕune clef est inférieur ou égal à 231 cÕest une clef normale, sÕil
est supérieur à  231 cÕest une clef durcie.

Pour faciliter la représentation des index on utilise la notation suivante: pour les index normaux on
compte à partir de 0, pour les index durcis on compte à partir de 0x80000000 et on ajoute le signe
"prime". Pour la première clef fille normale l&#8217;index s&#8217;écrit donc 0, et pour la première
clef durcie (index = 0x80000000) on écrit <markup>0'</markup>. De même, pour la deuxième clef
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durcie (index = 0x80000001) on écrit 1', et ainsi de suite. Quand voyez i' pour un index de clef, le vrai
numéro est 2<sup>31</sup>+i.

Identifiants (chemins) des clefs des portemonnaies HD

Pour identifier les clefs dans un portemonnaie HD, on utilise une représentation de leur "chemin" dans
lÕarbre des clefs, avec le caractère "/" utilisé comme séparateur (voir exemples de chemins de clefs HD).
Pour les clefs privées on représente la clef privée maitre par un "m", et pour les clefs publiques on
représente la clef publique maitre par un "M". Par exemple, la première clef privée dérivée de la clef
privée maitre est m/0, et la première clef publique est M/0. La deuxième clef fille de la première clef
fille est m/0/1, et ainsi de suite.

On suit le chemin en partant de la droite, jusquÕà remonter à la clef maitre. Par exemple, m/x/y/z
représente la z-ième fille de la clef m/x/y, qui est la y-ième fille de m/x, qui est la x-ième fille de m.

Table 7. exemples de chemins de clefs HD

chemin HD description de la clef

m/0 Première (0) clef privée fille de la clef privée
maitre (m)

m/0/0 Première petite-fille, fille de la première clef
privée fille (m/0)

m/0'/0 Première clef fille normale de la première clef fille
durcie (m/0')

m/1/0 Première clef privée fille de la deuxième fille
(m/1)

M/23/17/0/0 Première clef publique fille de la première fille de
la 18ème fille de la 24ème fille

Parcourir lÕarbre de clefs HD

Les arbres de clefs HD offrent beaucoup de possibilités. Chaque clef étendue parent peut générer 4
milliards de clef filles: 2 milliards de clefs normales et 2 milliards de clef durcies. Chaque clef fille peut
à son tour générer 4 milliards de clef filles, et ainsi de suite. LÕarbre peut être aussi profond que lÕon
veut: on peut générer une infinité de clefs. Il peut alors devenir difficile de sÕy retrouver dans lÕarbre
de clef, et en particulier il est délicat de lÕexporter vers un autre portemonnaie, car il y a un infinité de
possibilités pour organiser lÕarbre en branches et sous-branches.

Pour mieux gérer cette complexité, il existe 2 BIP qui proposent de standardiser lÕarbre de clefs des
portemonnaie HD. BIP0043 propose dÕutiliser lÕindex de la première clef fille durcie dÕune branche
comme indicateur de "lÕobjet" de cette branche. En se conformant à BIP0043, un portemonnaie HD ne
doit avoir quÕune seule branche de niveau 1, dont la structure est définie par cet objet. Par exemple, si
un portemonnaie HD contient uniquement la branche m/i'/, lÕobjet de cette branche est identifié par
lÕindex "i".
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BIP0044 est une extension de BIP0043 qui propose dÕutiliser comme "objet" lÕindex 44. Tous les
portemonnaies HD conformes à BIP0044 nÕont quÕune seule branche: m/44'/.

BIP004 défini une structure dÕarbre sur 5 niveaux:

m / objet' / type_de_monnaie' / compte' / change / index_addresse

Le premier niveau "objet" est toujours 44'. Le deuxième niveau "type_de_monnaie" identifie le type de
cryptomonnaie ce qui permet de gérer plusieurs crytomonnaies avec le même portemonnaie HD,
chaque cryptomonnaie ayant sa propre branche dédiée. Pour l&#8217;instant, 3 valeurs possibles ont
été définies: m/44'/0' pour Buitcoin, <markup>m/44'/1'</markup> pour Bitcoin Testne; et
<markup>m/44'/2'</markup> pour Litecoin.

Le troisième niveau, "compte", permet aux utilisateurs de diviser leur portemonnaie en différents
comptes, pour des raisons comptables ou organisationnelles. Par exemple, un portemonnaie HD
pourrait gérer les 2 comptes suivants: <markup>m/44'/0'/0'</markup> et
<markup>m/44'/0'/1'</markup>. Chaque compte correspond à la racine de sa propre sous-branche de
clef.

Le quatrième niveau, "change", est séparé en 2 branches, une pour recevoir des fonds et lÕautre pour
gérer les adresses de change. On remarquera quÕon utilise ici des clefs normales, alors quÕaux niveaux
précédents on utilisait des clefs durcies. Ainsi, on peut exporter les clefs publiques étendues
correspondant à ces 2 branches vers des environnements non-sécurisés. Les index des adresses
utilisées par le portemonnaie sont dérivés de ces 2 branches et forment ainsi le cinquième niveau de
lÕarbre, "index_adresse".

Table 8. Exemples dÕarbres BIP0044

chemin HD description de la clef

M/44'/0'/0'/0/2 La troisième clef pour recevoir des fonds, pour le
premier compte bitcoin

M/44'/0'/3'/1/14 La quinzième addresse de change du quatrième
compte bitcoin

m/44'/2'/0'/0/1 La deuxième clef privée du premier compte
Litecoin, utilisée pour signer des transactions

Explorer les portemonnaie HD avec Bitcoin Explorer

Avec lÕoutil en ligne de commande Bitcoin Explorer présenté au chapitre [ch03_bitcoin_client], on peut
générer et dériver des clefs déterministes BIP0032, et les afficher sous différents formats:
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$ bx seed | bx hd-new > m # creation d'une nouvelle clef privée maitre sauvegardée
dans le fichier "m"
$ cat m # affichage de la clef privée étendue maitre
xprv9s21ZrQH143K38iQ9Y5p6qoB8C75TE71NfpyQPdfGvzghDt39DHPFpovvtWZaRgY5uPwV7RpEgHs7cvdg
fiSjLjjbuGKGcjRyU7RGGSS8Xa
$ cat m | bx hd-public # génération de la clef publique étendue M/0
xpub67xpozcx8pe95XVuZLHXZeG6XWXHpGq6Qv5cmNfi7cS5mtjJ2tgypeQbBs2UAR6KECeeMVKZBPLrtJunS
DMstweyLXhRgPxdp14sk9tJPW9
$ cat m | bx hd-private # génération de la clef privée étendue m/0
xprv9tyUQV64JT5qs3RSTJkXCWKMyUgoQp7F3hA1xzG6ZGu6u6Q9VMNjGr67Lctvy5P8oyaYAL9CAWrUE9i6G
oNMKUga5biW6Hx4tws2six3b9c
$ cat m | bx hd-private | bx hd-to-wif # affichage de la clef privée m/0 au format
WIF
L1pbvV86crAGoDzqmgY85xURkz3c435Z9nirMt52UbnGjYMzKBUN
$ cat m | bx hd-public | bx hd-to-address # affichage de l'adresse bitcoin
correspondant à M/0
1CHCnCjgMNb6digimckNQ6TBVcTWBAmPHK
$ cat m | bx hd-private | bx hd-private --index 12 --hard | bx hd-private --index 4 #
génération de m/0/12'/4
xprv9yL8ndfdPVeDWJenF18oiHguRUj8jHmVrqqD97YQHeTcR3LCeh53q5PXPkLsy2kRaqgwoS6YZBLatRZRy
UeAkRPe1kLR1P6Mn7jUrXFquUt

Clefs et adresses: concepts avancés
Dans les prochaines sections, nous éudierons plusieurs utilisations avancées des clefs et adresses: clef
privées chiffrées, scripts et adresses multisignatures, adresses personnalisées, et portemonnaie papier.

Clefs privées chiffrées (BIP0038)

Il faut absolument que les clefs privées restent secrètes. Ce besoin de confidentialité entre en conflit
avec un autre besoin tout aussi important: il faut aussi que les clefs privées restent disponibles. En effet
faire en sorte que les clefs restent secrètes est nettement plus difficile quand on doit aussi les
sauvegarder pour éviter de les perdre. Certains portemonnaie proposent des sauvegardes chiffrées qui
contiennent les clefs privées, mais il faut conserver ces sauvegardes, et on peut parfois avoir besoin de
transférer les clefs vers un autre portemonnaie - lors dÕune mise à jour par exemple. On peut aussi
sauvegarder les clefs privées sur papier (voir Portemoinnaie papier), ou sur un lecteur externe comme
une clef usb. Mais que se passe-t-il si la sauvegarde est perdue ou volée ? Pour adresser ces besoins
contradictoires, BIP0038 (voir [bip0038]) propose un standard pour le chiffrer les clefs privées de façon
pratique, portable, et utilisable par de nombreux portemonnaie et clients.

BIP0038 propose un standard pour chiffrer les clefs privées avec une phrase de passe et encoder le
résultat au format Base58Check, afin de le rendre facile à sauvegarder et exporter vers dÕautres
portemonnaie sans exposer la clef privée. La clef est chiffrée avec lÕalgorithme  Advanced Encryption
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Standard (AES), standardisé par le National Institute of Standards and Technology (NIST) et utilisé pour
de nombreuses applications militaires et commerciales.

Le processus de chiffrement proposé par BIP0038 prend en entrée une clef privée, généralement
encodée au format WIF (une chaine de caractère au format Base58Check, commençant par "5"), et une
phrase de passe (cÕest à dire un long mot de passe) qui est souvent une suite de mot ou un chaine de
caractères complexe. Le résultat est encodé au format Base58Check et commence par 6P. Si vous voyez
une clef qui commence par 6P, cela veut dire quÕelle est chiffrée et que vous aurez besoin de la phrase
de passe pour la déchiffrer et la convertir au format WIF (qui commence par 5) pour lÕimporter dans
un portemonnaie. La plupart des portemonnaie reconnaissent les clefs chiffrées au format BIP0038 et
demanderont le phrase de passe lors de lÕimportation. DÕautres applications, comme le très utile client
web Bit Address (onglet Wallet Details) peuvent être utilisées pour décrypter les clefs BIP0038.

LÕutilisation la plus courante de BIP0038 est la création de portemonnaie papiers. Si lÕutilisateur choisit
une bonne phrase de passe, créer un portemonnaie papier contenant une clef privée chiffrée au
format BIP0038 est un moyen incroyablement sécurisé de stocker des bitcoin hors connection ("cold
storage").

Utilisez  bitaddress.org pour essayer de déchiffrer les clefs de la table Exemples de clefs chiffrées au
format BIP0038.

Table 9. Exemples de clefs chiffrées au format BIP0038

Clef privée (WIF) 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2Jpbnk
eyhfsYB1Jcn

Phrase de passe MyTestPassphrase

Clef chiffrée (BIP0038) 6PRTHL6mWa48xSopbU1cKrVjpKbBZxcLRRCdctL
J3z5yxE87MobKoXdTsJ

Adresses Pay-to-Script Hash (P2SH) et Multi-Sig

Comme nous lÕavons déja vu, les adresses bitcoin usuelles sont dérivées dÕune clef publique (elle même
dérivée dÕune clef privée) et commencent par "1". NÕimporte qui peut envoyer des bitcoins vers une
adresse commençant par "1" mais il faut la clef privée et le hash de la clef publique pour les dépenser.

Les adresses bitcoin commençant par "3" sont des adresses pay-to-script hash (P2SH), parfois appelées
à tort adresses multi-signatures ou multi-sig. Ces adresses ne représentent pas le hash dÕune clef
publique, mais le hash dÕun script. Elles ont été proposées par le BIP0016 (voir [bip0016]) en janvier
2012, et rapidement adoptées car elles offrent beaucoup plus de possibilités que les adresses classiques
pay-to-public-key-hash (P2PKH), qui commencent par "1". Pour utiliser les fonds envoyés vers une
adresses P2SH il ne suffit pas de présenter une signature et un hash de clef publique, il faut aussi
résoudre les contraintes définies dans le script qui a été hashé pour créeer lÕadresse.

Les adresses "pay-to-script hash" sont créées à partir des scripts des transactions, qui définissent qui
peut dépenser les sorties de ces transactions (voir [p2sh]). Pour encoder une adresse "pay-to-script
hash" on utilise le même double hash que pour les adresses, sauf que cÕest le script que lÕon hash et pas
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la clef publique:

script hash = RIPEMD160(SHA256(script))

Le résultat est encodé au format Base58Check en utilisant le préfixe 5, ce qui donne des adresses
commençant par 3. Par exemple, on peut générer lÕadresse P2SH
3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM avec lÕoutil Bitcoin Explorer  et les commandes  script-
encode, sha256, ripemd160, et base58check-encode (voir[libbitcoin]) de la façon suivante:

$ echo dup hash160 [ 89abcdefabbaabbaabbaabbaabbaabbaabbaabba ] equalverify checksig >
script
$ bx script-encode < script | bx sha256 | bx ripemd160 | bx base58check-encode --version
5
3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM

TIP

Les transactions P2SH ne sont pas forcément des transactions multi-signature, même si
cÕest souvent le cas. Le script qui est hashé peut implémenter dÕautres types de
transactions.

Adresses multi-signature et P2SH

AujourdÕhui, les adresses P2SH représentent le plus souvent des scripts multi-signature. Comme leur
nom lÕindique, pour résoudre ces scripts et donc dépenser les fonds il faut plus dÕune signature: il faut
présenter M signatures (M est appelé le "seuil") qui soient valables pour M clefs parmi N clefs
possibles, avec M plus petit ou égal à N. On parle aussi de multi-signature M-sur-N (M-of-N). Par
exemple, notre ami Bob le propriétaire du café de [ch01_intro_what_is_bitcoin] pourrait utiliser des
adresses multi-signature 1-sur-2, les 2 clefs étant la sienne et celle de sa femme. De cette façon, sa
femme ou lui peuvent dépenser les fonds, un peu comme un compte bancaire joint ou les 2 époux
peuvent signer des chèques. De la même façon, Gopesh, le web designer que Bob a engagé pour faire
son site web, pourrait utiliser des adresses multi-signature 2-sur-3, pour être certain que les fonds ne
peuvent être dépensés que si au moins 2 associés ont signés la transaction.

Au chapitre [transactions] nous étudierons comment créer des transactions qui dépensent les fonds
envoyés vers des adresses P2SH (et multi-signature).

Adresses personnalisées

Les adresses personnalisées sont des adresses bitcoin valides mais qui contiennent des mots ou des
messages. Par exemple, 1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33 est une adresse valide qui
commence par le mot "Love". Pour générer une adresse personnalisée, il faut essayer des milliards de
clefs privées, jusquÕà ce que lÕadresse obtenue contienne le mot recherché. Il existe quelques
optimisations possible mais globalement, on tire une clef privée au sort, on génère la clef publique
correspondante, puis lÕadresse à partir de la clef publique, et on vérifie si lÕadresse correspondant à la
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personnalisation souhaitée, en répétant lÕopération plusieurs milliards de fois si nécessaire.

Une fois que lÕon a trouvé la clef privée qui permet de générer lÕadresse personnalisée voulue, on
utilise cette adresse comme nÕimporte quelle autre adresse bitcoin. Les adresses personnalisées offrent
exactement la même sécurité que les autres adresses, et se basent sur les mêmes algorithmes (ECC et
SHA). Il nÕest pas plus facile de retrouver la clef privée que pour une adresse normale.

Au chapitre [ch01_intro_what_is_bitcoin], nous avions fait la connaissance dÕEugenia, qui dirige une
association caritative aux Philippines. Supposons quÕelle souhaite organiser une collecte en bitcoin, et
veuille utiliser une adresse personnalisée commençant par "1Kids" pour faire la promotion de sa
collecte. Regardons comment générer cette adresse, et lÕimpact sur la sécurité de la collecte.

Génération dÕune adresse personnalisée

Il est important de garder à lÕesprit quÕune adresse bitcoin nÕest quÕun nombre représenté en base 58.
Chercher une adresse commençant par "1Kids" revient à chercher une adresse comprise entre
1Kids11111111111111111111111111111 et 1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz. Il y a environ 5829

(environ1.4 * 1051) adresses entre ces 2 valeurs, qui commencent toutes par "1Kids". La table Les plages
dÕadresses commençant par "1Kids" décrit les plages dÕadresses commençant par "1Kids".

Table 10. Les plages dÕadresses commençant par "1Kids"

De 1Kids11111111111111111111111111111

1Kids11111111111111111111111111112

1Kids11111111111111111111111111113

...

A 1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Regardons à quel nombre "1Kids" correspond en base 58, et essayons de calculer la probabilité de
trouver une adresse correspondante (voir Probabilité de trouver une adresse personnalisée
(commençant par 1KidsCharity) et temps moyen pour la trouver sur un PC de bureau.). Un PC de
bureau standard, sans matériel dédié, peut essayer environ 100 000 clefs par secondes.

Table 11. Probabilité de trouver une adresse personnalisée (commençant par 1KidsCharity) et temps
moyen pour la trouver sur un PC de bureau.

Longueur Mot recherché Fréquence Temps moyen de
recherche

1 1K 1 clef sur  58 < 1 milliseconde

2 1Ki 1 clef sur 3364 50 millisecondes

3 1Kid 1 clef sur 195000 < 2 secondes

4 1Kids 1 clef sur 11 millions 1 minute
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Longueur Mot recherché Fréquence Temps moyen de
recherche

5 1KidsC 1 clef sur 656 million 1 heure

6 1KidsCh 1 clef sur 38 milliards 2 days

7 1KidsCha 1 clef sur 2.2 trillions 3Ð4 mois

8 1KidsChar 1 clef sur 128 trillions 13Ð18 ans

9 1KidsChari 1 clef sur 7 quadrillions 800 ans

10 1KidsCharit 1 clef sur 400
quadrillions

46,000 ans

11 1KidsCharity 1 sur 23 quintillions 2.5 millions dÕannées

Comme vous pouvez le constater, Eugenia nÕest pas prête dÕavoir son adresse "1KidsCharity", même en
utilisant des millers dÕordinateurs. Chaque caractère supplémentaire multiplie le temps de recherche
par 58. Chercher des adresses commençant par des motifs de plus de 7 lettres se fait en général sur des
PC dédiés disposant de plusieurs  processeurs graphiques (GPUs). Ce sont souvent dÕancien mineurs de
bitcoin qui ne sont plus rentables mais quÕon peut utiliser pour chercher des adresses personnalisées.
Ce type de calcul est beaucoup plus rapide (plusieurs ordres de grandeur) sur GPU que sur un CPU
généraliste.

Pour générer une adresse personnalisée il est aussi possible de sÕadresser à un "pool" (regroupement)
spécialisé comme Vanity Pool. Un "pool" permet à des personnes possédant des GPU de se regrouper et
de gagner de lÕargent en cherchant des adresses personnalisées. Pour une somme modique (0.01
bitcoin soit environ $5 au moment de lÕécriture de ce livre) Eugenia peut acheter une adresse
personnalisée commençant par un motif de 7 caractères, et avoir le résultat en quelques heures au lieu
dÕattendre plusieurs mois en faisant la recherche sur un ordinateur de bureau.

La génération dÕune adresse personnalisée est une recherche par force brute: on essaie une clef au
hasard, on vérifie si lÕadresse contient le motif souhaité, on recommence jusquÕà ce quÕon ait trouvé.
Mineur dÕadresses personnalisées est un exemple de "mineur" dÕadresses personnalisées écrit en C++
et basé sur la librarie  libbitcoin que nous avons déja vu au chapitre [alt_libraries].

Example 8. Mineur dÕadresses personnalisées

#include <bitcoin/bitcoin.hpp>

// The string we are searching for
const std::string search = "1kid";

// Generate a random secret key. A random 32 bytes.
bc::ec_secret random_secret(std::default_random_engine& engine);
// Extract the Bitcoin address from an EC secret.
std::string bitcoin_address(const bc::ec_secret& secret);
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// Case insensitive comparison with the search string.
bool match_found(const std::string& address);

int main()
{
Ê   // random_device on Linux uses "/dev/urandom"
Ê   // CAUTION: Depending on implementation this RNG may not be secure enough!
Ê   // Do not use vanity keys generated by this example in production
Ê   std::random_device random;
Ê   std::default_random_engine engine(random());

Ê   // Loop continuously...
Ê   while (true)
Ê   {
Ê       // Generate a random secret.
Ê       bc::ec_secret secret = random_secret(engine);
Ê       // Get the address.
Ê       std::string address = bitcoin_address(secret);
Ê       // Does it match our search string? (1kid)
Ê       if (match_found(address))
Ê       {
Ê           // Success!
Ê           std::cout << "Found vanity address! " << address << std::endl;
Ê           std::cout << "Secret: " << bc::encode_hex(secret) << std::endl;
Ê           return 0;
Ê       }
Ê   }
Ê   // Should never reach here!
Ê   return 0;
}

bc::ec_secret random_secret(std::default_random_engine& engine)
{
Ê   // Create new secret...
Ê   bc::ec_secret secret;
Ê   // Iterate through every byte setting a random value...
Ê   for (uint8_t& byte: secret)
Ê       byte = engine() % std::numeric_limits<uint8_t>::max();
Ê   // Return result.
Ê   return secret;
}

std::string bitcoin_address(const bc::ec_secret& secret)
{
Ê   // Convert secret to pubkey...
Ê   bc::ec_point pubkey = bc::secret_to_public_key(secret);
Ê   // Finally create address.
Ê   bc::payment_address payaddr;
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Ê   bc::set_public_key(payaddr, pubkey);
Ê   // Return encoded form.
Ê   return payaddr.encoded();
}

bool match_found(const std::string& address)
{
Ê   auto addr_it = address.begin();
Ê   // Loop through the search string comparing it to the lower case
Ê   // character of the supplied address.
Ê   for (auto it = search.begin(); it != search.end(); ++it, ++addr_it)
Ê       if (*it != std::tolower(*addr_it))
Ê           return false;
Ê   // Reached end of search string, so address matches.
Ê   return true;
}

NOTE

Cet exemple utilise std::random_device. Certaines implémentations utilisent un
générateur aléatoire cryptographiquement sur (CSRNG) fourni pas lÕOS. Dans le cas
dÕOS de type UNIX, comme Linux, ces nombres sont lus depuis le fichier /dev/urandom.
Le générateur aléatoire utilisé ici est suffisant pour une démonstration, mais il nÕest pas
assez sécurisé pour une utilisation en production.

Ce code soit être compilé avec un compilateur C et linké avec la librarie libbitcoin (qui doit d'abord être
installée). Pour exécuter l'exemple, lancez le programme  vanity-miner++ sans paramètres (voir
Compilation et exécution du programme vanity-miner), il essaiera de trouver une adresse
personnalisée commençant par "1kid".
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Example 9. Compilation et exécution du programme vanity-miner

$ # Compilation avec g++
$ g++ -o vanity-miner vanity-miner.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Lancement de l'exemple
$ ./vanity-miner
Found vanity address! 1KiDzkG4MxmovZryZRj8tK81oQRhbZ46YT
Secret: 57cc268a05f83a23ac9d930bc8565bac4e277055f4794cbd1a39e5e71c038f3f
$ # Nouvelle exécution qui produira un résultat différent
$ ./vanity-miner
Found vanity address! 1Kidxr3wsmMzzouwXibKfwTYs5Pau8TUFn
Secret: 7f65bbbbe6d8caae74a0c6a0d2d7b5c6663d71b60337299a1a2cf34c04b2a623
# Utilisation de la commande "time" pour mesurer le temps pris pour trouver le r
ésultat
$ time ./vanity-miner
Found vanity address! 1KidPWhKgGRQWD5PP5TAnGfDyfWp5yceXM
Secret: 2a802e7a53d8aa237cd059377b616d2bfcfa4b0140bc85fa008f2d3d4b225349

real    0m8.868s
user    0m8.828s
sys 0m0.035s

Il ne faut que quelques secondes pour trouver une adresse commençant par "kid", comme nous
pouvons le mesurer avec la commande unix time. Essayez de changer le motif recherché dans le code
source et regardez combien il faut de temps pour trouver un motif de 4 ou 5 caractères!

Sécurité des adresses personnalisées

Les adresses personnalisées peuvent être utilisées pour renforcer ou affaiblir la sécurité de vos
bitcoins, et doivent être vues comme une arme à double tranchant. Une adresse personnalisée très
distinctive peut être un atout en terme de sécurité, car il sera difficile à un attaquant de la remplacer
par son adresse pour tromper vos clients. Mais il est aussi possible pour un attaquant de générer une
adresse personnalisée qui ressemble à nÕimporte quelle autre (ou même qui ressemble à une autre
adresse personnalisée) pour tromper vos clients.

Eugenia pourrait utiliser une adresse de dons aléatoire (par exemple
1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy) ou une adresse personnalisée commençant par 1Kids et
facilement reconnaissable.

Dans les 2 cas, utiliser une adresse fixe (plutôt quÕune adresse générée dynamiquement, pour chaque
donneur) est dangereux car un pirate pourrait attaquer votre site et remplacer cette adresse par la
sienne, et ainsi capter les dons. Si vous publiez votre adresse de dons à différents endroits, vos
utilisateurs peuvent essayer de vérifier visuellement quÕils paient vers la bonne adresse, qui apparait
sur votre site, vos emails, etcÉ. Dans le cas dÕune adresse aléatoire comme
1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy, lÕutilisateur moyen se contentera de vérifier que
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lÕadresse commence bien par "1J7mdg". Utilisant un générateur dÕadresses personnalisées, un
attaquant pourrait la remplacer par une adresse qui commence de la même façon, voir Génération
dÕune adresse personnalisée qui ressemble à une adresse aléatoire.

Table 12. Génération dÕune adresse personnalisée qui ressemble à une adresse aléatoire

Adresse aléatoire originale 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy

Adresse personnalisée(mêmes 4 premiers
caractères)

1J7md1QqU4LpctBetHS2ZoyLV5d6dShhEy

Adresse personnalisée(mêmes 5 premiers
caractères)

1J7mdgYqyNd4ya3UEcq31Q7sqRMXw2XZ6n

Adresse personnalisée(mêmes 6 premiers
caractères)

1J7mdg5WxGENmwyJP9xuGhG5KRzu99BBCX

Est-ce que les adresses personnalisées améliorent la sécurité? Si Eugenia utilise l&#8217;adresse
1Kids33q44erFfpeXrmDSz7zEqG2FesZEN, ses utilisateurs vont probablement vérifier que
l&#8217;adresse de dons commence bien par "1Kids33" et obliger un attaquant à générer une adresse
personnalisée dont les 6 premiers caractères sont les mêmes (2 de plus que "1Kids"), soit un effort 3364
fois (58 &#x00D7; 58) plus important que pour le calcul de l&#8217;adresse d&#8217;Eugenia. En gros,
l&#8217;investissement d&#8217;Eugenia dans une adresse personnalisée oblige un attaquant à
générer une adresse personnalisée plus couteuse. Si Eugenia avait voulu une adresse personnalisée en
choisissant les 8 premiers caractères, l&#8217;attaquant devrait sans doute spécifier les 10 premiers,
ce qui serait infaisable sur un ordinateur personnel et très couteux en passant par un mineur dédié ou
un pool de minage. Ainsi ce qui est abordable en termes de couts pour Eugenia devient trop couteux
pour un attaquant, surtout si les gains potentiels de la fraude ne couvrent pas la génération
d&#8217;une adresse personnalisée.

Portemoinnaie papier

Les portemonnaie papier sont des clefs privées bitcoin imprimées sur papier. On peut aussi imprimer
les adresses bitcoin associées mais ce nÕest pas obligatoire car on peut toujours les générer à partir des
clefs privées. Les portemonnaie papier sont une bonne solution de sauvegarde ou de stockage en mode
déconnecté ("cold storage"). Utilisé comme sauvegarde, cela permet de se protéger contre une panne de
disque dur, la perte ou le vol de son ordinateur, ou la suppression accidentelle de ses clefs. Utilisé
comme "cold storage", un portemonnaie papier dont les clefs ont été générées sur un ordinateur non
connecté à internet, et qui nÕont jamais été importées sur un ordinateur connecté, est à lÕabri des
hackers, key-loggers et autre piratages.

Il existe beaucoup de portemonnaie papier, mais à la base il sÕagit simplement de clefs et adresses
imprimées sur papier. Le portemonnaie papier le plus simple Ñ une clef privée et une adresse bitcoin
imprimées sur du papier est un exemple de portemonnaie papier le plus simple possible.

Table 13. Le portemonnaie papier le plus simple Ñ une clef privée et une adresse bitcoin imprimées sur du
papier
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Adresse publique Clef privée (WIF)

1424C2F4bC9JidNjjTUZCbUxv6Sa1Mt62x 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2Jpbnk
eyhfsYB1Jcn

Pour générer un portemonnaie papier on utilise des outils comme le générateur JavaScript
bitaddress.org. Cette page contient le code nécessaire à la génération de clef et de portemonnaie papier
dans la navigateur, même sans connexion internet. Pour lÕutiliser, sauvez la page HTML sur disque, ou
sur une clef USB. Déconnectez-vous dÕinternet et ouvrez la page HTML depuis un navigateur. Encore
mieux: bootez sur un OS vierge, en utilisant un Linux sur CD bootable par exemple. Vous pourrez
ensuite créer des clefs et les imprimer avec une imprimante reliée par un cable USB, pour obtenir un
portemonnaie papier dont les clefs nÕexiste que sur papier et nÕont jamais été stockées sur un système
connecté à internet. Il nÕy a plus quÕà le ranger dans un coffre ignifugé et "envoyer" des bitcoins vers
les adresses du portemonnaie pour avoir une solution de "cold storage" simple mais très sécurisée.
Exemple de portemonnaie papier simple généré sur bitaddress.org montre un portemonnaie papier
généré avec bitaddress.org.

Figure 14. Exemple de portemonnaie papier simple généré sur bitaddress.org

Le problème avec les portemonnaie papier cÕest quÕon peut les voler. Un voleur qui a accès au
portemonnaie peut le voler ou le prendre en photo et récupérer les bitcoins associés à ses clefs. On
peut utiliser un portemonnaie papier plus avancé dont les clefs sont chiffrées selon le standard
BIP0038. Les clefs sont protégées par une phrase de passe mémorisée par lÕutilisateur, et le
portemonnaie est inutilisable sans cette phrase. CÕest une meilleure solution quÕun portemonnaie
chiffré car les clefs nÕont jamais été sur un ordinateur connecté: il faut les voler dans un coffre ou un
système de stockage sécurisé. Exemple de portemonnaie papier chiffré généré sur bitaddress.org.  La
phrase de passe est "test".montre un portemonnaie papier dont les clefs privées sont chiffrées
(BIP0038) créé avec bitaddress.org.
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Figure 15. Exemple de portemonnaie papier chiffré généré sur bitaddress.org.  La phrase de passe est
"test".

WARNING

Bien que lÕon puisse envoyer des fonds vers un portemonnaie papier en plusieurs
fois, il est conseillé de tout retirer en une seule fois, et de tout dépenser. En effet si
on ne dépense pas tout certains portemonnaie vont générer une adresse de
change. De plus, si lÕordinateur utilisé pour signer la transaction est compromis, on
risque de dévoiler la clef privée. En dépensant tout en une fois, on diminue le
risque de dévoiler la clef. Si vous nÕavez besoin que dÕune petite partie des fonds,
envoyez le reste vers un autre portemonnaie papier dans la même transaction.

Il existe une grande variété de portemonnaie papier (design, format, &#8230;&#8203;). Certains sont
destinés à être donnés en cadeau et suivent une thématique précise (Noel, fêtes de fin d&#8217;année).
D&#8217;autres sont prévus pour être conservés dans un coffre, la clef privée étant protégée (par un
film opaque, parce que le portemonnaie est plié et collé avec une bande adhésive de sécurité). On peut
voir ici <xref linkend="paper_wallet_bpw" xrefstyle="select: labelnumber"/> through <xref
linkend="paper_wallet_spw" xrefstyle="select: labelnumber"/> différents portemonnaie papier et leur
caractéristiques.

Figure 16. Porte monnaie vendu par bitcoinpaperwallet.com, la clef est protégée par un volet qui se replie.
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Figure 17. Portemonnaie bitcoinpaperwallet.com replié, la clef privée est masquée.

Sur dÕautres portemonnaie, on trouve plusieurs copies des clefs et adresses sur des coupons
détachables, ce qui permet de stocker plusieurs copies et de les protéger contre les incendies,
inondations et autres désastres naturels.

Figure 18. Portemonnaie papier avec plusieurs copies de la clef sur des coupons détachables.
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Transactions

Introduction
Les transactions sont la partie la plus importante du système bitcoin. Tout le système vise en effet à
assurer que des transactions puissent être créées, diffusées sur le réseau, validées, et enfin ajoutée au
registre global des transactions (la blockchain). Les transactions sont des structures de données qui
encodent le transfert de valeur entre membres du système bitcoin. Chaque transaction est une entrée
publique dans la blockchain bitcoin, le registre mondial de comptabilité en partie double.

Dans ce chapitre, nous allons examiner les différentes formes de transactions, ce quÕelles contiennent,
comment elles sont créées, vérifiées, et intégrées dans lÕenregistrement permanent de toutes les
transactions.

Cycle de vie dÕune transaction
Le cycle de vie dÕune transaction commence avec sa création, aussi désignée de la façon suivante
origination. La transaction est ensuite signée avec une ou plusieurs signatures signifiant lÕautorisation
de dépenser les fonds référencés dans la transaction. Elle est ensuite diffusée sur le réseau bitcoin, au
sein duquel chaque nÏud réseau (participant) valide et continue sa diffusion jusquÕà ce quÕelle ait
atteint tous les nÏuds réseau ou presque. Enfin, la transaction est vérifiée par un nÏud de minage et
intégrée dans un bloc de transactions qui est enregistré sur la blockchain.

Une fois enregistrée sur la blockchain et confirmée par les blocs suivants (confirmations), la
transaction devient partie intégrante du registre bitcoin et est acceptée comme valide par tous les
participants. Les fonds alloués à un nouveau propriétaire par la transaction peuvent alors être
dépensés dans une nouvelle transaction, ajoutant un nouveau maillon à la chaîne que forment les
propriétaires successifs et répétant à nouveau le cycle de vie dÕune transaction.

Créer des transactions

DÕune certaine manière, il peut être utile dÕenvisager la transaction comme un chèque. Comme un
chèque, une transaction est un instrument qui exprime lÕintention de transférer de lÕargent et est
invisible dans le système financier jusquÕau moment où quelquÕun en exige le paiement. Comme dans
le cas dÕun chèque, lÕémetteur dÕune transaction nÕest pas nécessairement celui qui signe la transaction.

Les transactions peuvent être créées en ligne ou hors ligne par nÕimporte qui, même quelquÕun qui
nÕest pas autoriser à signer sur le compte impliqué. Par exemple, un commis peut écrire lui-même des
chèques que le PDG devra signer. De même, il peut créer des transactions bitcoin qui nécessiteront la
signature électronique du PDG pour être valides. Cependant, le chèque indique un compte précis
comme origine des fonds, tandis quÕune transaction bitcoin indiquera une transaction antérieure
comme source.

Dès quÕune transaction a été créée, elle est signée par le ou les propriétaires de la source des fonds. Si
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elle est correctement formulée et signée, elle est alors valide et contient toutes les informations
nécessaires à lÕexécution du transfert de fonds. Enfin, la transaction validée doit être mise sur le réseau
bitcoin afin de pouvoir être propagée jusquÕà un mineur et intégrée au registre public (blockchain).

Diffuser les transactions sur le réseau bitcoin

Tout dÕabord, une transaction doit être délivrée sur le réseau bitcoin pour pouvoir être diffusée et
incluse dans la blockchain. Une transaction bitcoin nÕest essentiellement que 300 ou 400 bytes de
données et doit atteindre nÕimporte lequel des dizaines milliers de nÏuds que compte le réseau. Les
émetteurs nÕont pas besoin de faire confiance aux noeuds quÕils utilisent pour diffuser leur transaction,
tant quÕils en utilisent plus quÕun pour sÕassurer de leur bonne diffusion. Les noeuds nÕont pas besoin
de faire confiance les émetteurs ou dÕétablir leur "identité". Parce que la transaction est signée et ne
contient aucune information confidentielle, clés privées ou identifiants, elle peut être diffusée
publiquement au moyen de nÕimporte quel réseau sous-jacent convenant à cet usage. Contrairement
aux transactions, par exemple, des cartes de crédit, qui contiennent des informations sensibles et ne
peuvent être transmises que sur des réseaux cryptés, une transaction bitcoin peut être envoyée sur
nÕimporte quel réseau. Tant que la transaction peut atteindre un premier noeud qui va la diffuser sur
le réseau bitcoin, la façon dont elle atteint ce premier noeud importe peu.

Les transactions bitcoin peuvent donc être transmises sur le réseau bitcoin par des réseaux non
sécurisés tels que WiFi, Bluetooth, Chirp, code-barres, ou par un copier-coller sur une page internet.
Dans des cas extrêmes, une transaction bitcoin pourrait être transmise par packet radio, relai satellite,
ou ondes courtes en transmission par rafales, étalement de spectre ou saut de fréquence afin dÕéviter
les tentatives dÕinterception et de brouillage. Une transaction bitcoin pourrait même être encodée sous
la forme dÕun smiley (émoticône) et postée sur un forum public, envoyée dans un message textuel ou
sur le chat de Skype. Il est virtuellement impossible dÕempêcher qui que ce soit de créer et exécuter
une transaction bitcoin, car ce dernier a transformé lÕargent en structure de données.

Propager les Transactions sur le Réseau Bitcoin

Une fois quÕune transaction est envoyée à nÕimporte quel nÏud connecté au réseau bitcoin, elle doit
être validée par ce nÏud. Si elle est valide, ce nÏud la diffusera ensuite aux autres nÏuds auxquels il
est connecté, et un message sera envoyé simultanément à lÕémetteur de la transaction pour lÕavertir du
succès de la transaction. Si la transaction est invalide, le nÏud la rejettera et enverra simultanément
un message à lÕémetteur pour lÕen avertir.

Le réseau bitcoin est un réseau peer-to-peer, ce qui signifie que chaque nÏud bitcoin est connecté aux
autres nÏuds quÕil découvre par un protocole peer-to-peer à chaque initialisation. Le réseau pris dans
son intégralité est composé de maillons connectés de manière lâche, sans topologie fixe ni structure
définie, et ainsi tous les nÏuds sont égaux, dÕoù le terme de "pairs". Les messages, incluant les
transactions et les blocs, sont diffusés de chaque nÏud à tous les pairs auxquels ils sont connectés, une
opération appelée "flooding". Une transaction nouvellement validée, une fois injectée dans nÕimporte
quel nÏud du réseau, est envoyée à tous les nÏuds auxquels il est connecté (neighbors), puis chacun
de ces nÏuds la transmet à ses propres voisins, et ainsi de suite. Une transaction valide va ainsi être
diffusée en quelques secondes à travers le réseau, comme une onde se propageant de façon
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exponentielle, jusquÕà ce que tous les nÏuds du réseau lÕaient reçue.

Le réseau bitcoin est conçu pour diffuser les transactions et les blocs à tous les nÏuds dÕune façon
efficace et résiliente, ainsi que résistante aux attaques. Pour éviter le spamming, les attaques par déni
de service, ou toute autre attaque par nuisance contre le système bitcoin, chaque nÏud valide
indépendamment chaque transaction avant de la diffuser plus loin dans le réseau. Une transaction
incorrectement formulée ne passera donc pas le premier nÏud. Les règles permettant de valider les
transactions sont expliquées en détails dans [tx_verification].

Structure des Transactions
Une transaction est unestructure de données qui encode un transfert de valeur dÕune source de fonds,
appelé input, à un point de destination, appelée output. Les input et output de transaction ne sont pas
liés à des comptes ou des identités. Au contraire, vous devriez plutôt les imaginer comme des montants
en bitcoinÑdes morceaux de bitcoinÑverrouillés grâce à un secret particulier que seulement le
propriétaire, ou une personne qui connaîtrait son secret, pourrait déverrouiller. Une transaction
comprend un certain nombre de champs, comme le montre La structure dÕune transaction.

Table 1. La structure dÕune transaction

Taille Champ Description

4 octets Version Spécifie quelles règles suit cette
transaction

1-9 octets (VarInt) Compteur dÕInput Combien dÕinputs sont inclus

Variable Inputs Un ou plusieurs inputs de
transaction

1-9 octets (VarInt) Compteur dÕOutput Combien dÕoutput sont inclus

Variable Outputs Un ou plusieurs outputs de
transaction

4 octets Locktime Un horodateur Unix ou le
numéro dÕun bloc
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Temps de verrouillage dÕune transaction

Le locktime, ou temps de verrouillage, aussi appelé "nLockTime" selon le nom utilisé dans le
client de référence, définit le moment où une transaction devient valide afin dÕêtre relayée sur le
réseau ou ajoutée à la blockchain. Cette valeur est le plus souvent nulle, permettant la diffusion
et lÕexécution immédiate de la transaction. Si non-nulle et inférieure à 500 million, elle est
interprétée comme un numéro de bloc, ce qui signifie que la transaction nÕest pas valide et ne
sera pas relayée et incluse dans la blockchain tant que celle-ci nÕaura pas atteint le bloc
correspondant à la valeur indiquée. Si cette valeur est supérieure à 500 million, elle est
interprétée comme une indication de temps Unix Epoch (secondes depuis le 1er janvier 1970) et
la transaction nÕest pas valide avant le temps indiqué. Les transactions dont la valeur locktime
indique un bloc ou un moment futur doivent être conservées dans leur système dÕorigine et
transmises au réseau bitcoin seulement une fois celles-ci valides. Utiliser le locktime revient ainsi
à post-dater un chèque.

Outputs et Inputs de transaction
Le bloc constitutif fondamental dÕune transaction bitcoin est un unspent transaction output, ou UTXO.
Les UTXO sont des morceaux indivisibles de bitcoin liés à un utilisateur précis, enregistrés sur la
blockchain, et reconnu comme des unités monétaires par le réseau entier. Le réseau bitcoin garde la
trace de tous les UTXO disponible (non dépensés), dont le montant se compte aujourdÕhui en millions.
A chaque fois quÕun utilisateur reçoit des bitcoins, le montant est enregistré dans la blockchain en tant
quÕUTXO. Ainsi, les bitcoins dÕun utilisateur en tant quÕUTXO peuvent être éparpillés entre des
centaines de transactions et de blocs. En effet, il nÕexiste rien de comparable à un solde propre à un
compte ou à une adresse ; il nÕy a que des UTXO épars, liés à un utilisateur précis. Le concept du solde
dÕun utilisateur de bitcoin est une invention des applications de wallet. Le wallet calcule le solde de
lÕutilisateur en examinant la blockchain et en agrégeant tous les UTXO qui lui appartiennent.

TIP
Il nÕy a pas de comptes ou de soldes en bitcoins ; il nÕy a que des unspent transaction
outputs (UTXO) éparpillés sur la blockchain.

Un UTXO peut avoir une valeur arbitraire, libellée comme un multiple desatoshis. De même que le
dollar peut être divisé en "cents", la plus petite subdivision de bitcoin, le "satoshi", représente un cent-
millionième de bitcoin. Bien quÕun UTXO puisse représenter nÕimporte quelle valeur arbitraire, une
fois créé il est aussi indivisible quÕune pièce quÕon ne peut pas couper en deux. Si le montant dÕun
UTXO est plus important que la valeur de la transaction, il doit néanmoins être consommé
intégralement dans le processus et générer un retour de monnaie à lÕémetteur. En dÕautres termes, si
vous avez un UTXO de 20 bitcoins et que vous désirez payer 1 bitcoin, alors la transaction doit dÕabord
consommer les 20 bitcoins de lÕUTXO avant de produire deux outputs : le paiement d'1 bitcoin aux
destinataires de la transaction et un autre paiement de 19 bitcoins vers votre wallet, comme si on vous
rendait la monnaie. En conséquence, la plupart des transactions en bitcoin génère un rendu de
monnaie.
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Imaginez une femme en pleine séance de shopping désirant acheter une boisson à 1,50$. Elle va sortir
son porte-feuille et essayer de rassembler une combinaison de pièces et de billets pour couvrir la
totalité de ces 1,50$. Si possible, elle prendra le montant exact (un billet dÕun dollar et deux pièces de
25 cents), ou alors une combinaison de pièces (six pièces de 25 cents), ou même, si nécessaire, une
dénomination supérieure comme un billet de 5 dollars. Si elle donne au commerçant un montant trop
élevé, comme le billet de 5 dont nous venons de parler, elle sÕattendra naturellement à ce quÕon lui
rende 3,50$ de monnaies, quÕelle remettra dans son porte-feuille et gardera disponible pour de futures
transactions.

De même, une transaction bitcoin doit être créée à partir de lÕUTXO dÕun utilisateur dans nÕimporte
quelle dénomination disponible pour cet utilisateur. Les utilisateurs ne peuvent pas couper un UTXO
en deux, comme ils ne peuvent pas le faire avec un billet dÕun dollar et encore sÕen servir dans leurs
transactions. LÕapplication wallet de lÕutilisateur sélectionnera en général dans les UTXO de lÕutilisateur
disponibles différentes unités pour composer un montant supérieur ou égal au montant désiré de la
transaction.

Comme dans la vraie vie, lÕapplication bitcoin peut user de plusieurs stratégies pour arriver au
montant de lÕachat : combiner plusieurs unités dÕun montant inférieur, trouver la monnaie exacte ou
utiliser une unité dÕun montant plus grand que la transaction et récupérer la monnaie. Tout cet
assemblage complexe de UTXO est réalisé par le porte-monnaie de lÕutilisateur automatiquement de
façon transparente et invisible. LÕinformation concernant cette construction ne vous est utile que dans
le cas ou vous construisez vous-mêmes en codant des transactions à partir dÕUTXO.

Les UTXO consommées par une transaction sont appelées les inputs de transaction, les UTXO créées
par une transaction sont appelées outputs de transaction. De cette façon des montants de valer en
bitcoin sont déplacés de propriétaires en propriétaires dans une chaine de transactions consommant et
créant des UTXO. Les transaction consomment des UTXO en les déverrouillant avec la signature du
propriétaire actuel et créent des UTXO en les verrouillant sur lÕadresse du nouveau propriétaire.

LÕexception de cette chaine dÕinputs et dÕoutputs est un type spécial de transaction appelé la
transaction coinbase, qui est la première transaction dÕun bloc. Cette transaction est positionnée par le
mineur "gagnant" et créée de tous nouveaux bitcoins payables à ce mineur comme récompense du
minage. CÕest ainsi que se fait la création monétaire bitcoin à lÕissue du processus de minage comme
nous le verrons dans le [ch8].

TIP

Qui vient en premier ? Les inputs ou les outputs, lÕoeuf ou la poule ? Les outputs viennent
en premier car les transaction coinbase, qui génèrent de nouveaux bitcoins, nÕont pas
dÕinputs et créent des outputs ex nihilo.

Outputs de transaction

Touts les transaction bitcoin créent des outputs qui sont enregistrés dnas le registre bitcoin. Presque
tous ces outputs, à lÕexception dÕun  (voir Data Output (OP_RETURN)), créent des montants de bitcoin
que lÕon pourra dépenser appelés  unspent transaction outputs ou UTXO qui sont reconnues  ensuite
par le réseau comme disponibles à la dépense pour de futures transactions. Envoyer des bitcoins à
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quelquÕun consiste en la création de UTXO associées à son adresse quÕil pourra dépenser par la suite.

les UTXO sont pistées par tous les noeuds complet bitcoin (les full nodes) dans un ensemble de données
appelé le UTXO set ou le UTXO pool sauvegardé en base de données. Les nouvelles transaction
consomment (dépensent) un ou plusieurs de ces outputs contenus dans le UTXO set.

Les outputs de transaction sont constitués de deux parties :

¥ Un montant de bitcoin en satoshis, lÕunité la plus petite de bitcoin

¥ Un locking script (ou script de verrouillage), également appelé "charge" qui "verrouille" ce montant
en spécifiant les conditions nécessaires à la dépense de cet output

Le langage de script de transaction utilisé pour le locking script mentionné précédemment est décrit en
détail dansScript des Transactions et Langage de Script. La structure dÕun output de transaction
détaille la structure dÕun output de transaction.

Table 2. La structure dÕun output de transaction

Taille Champ Description

8 octets Montant Valeur bitcoin en satoshis (10-8

bitcoin)

1-9 octets (VarInt) Taille locking script Longueur du locking script en
octets

Variable Locking-Script Un script qui définit les
conditions nécessaires à l a
dépense de lÕoutput

Dans Un script qui fait appel à lÕAPI blockchain.info pour trouver les UTXO associés à une adresse,
nous utilisons lÕAPI de blockchain.info pour trouver les outputs non dépensés (UTXO) dÕune adresse
donnée.
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Example 1. Un script qui fait appel à lÕAPI blockchain.info pour trouver les UTXO associés à une adresse

# get unspent outputs from blockchain API

import json
import requests

# example address
address = '1Dorian4RoXcnBv9hnQ4Y2C1an6NJ4UrjX'

# The API URL is https://blockchain.info/unspent?active=<address>
# It returns a JSON object with a list "unspent_outputs", containing UTXO, like this:
#{  "unspent_outputs":[
#   {
#     "tx_hash":"ebadfaa92f1fd29e2fe296eda702c48bd11ffd52313e986e99ddad9084062167",
#     "tx_index":51919767,
#     "tx_output_n": 1,
#     "script":"76a9148c7e252f8d64b0b6e313985915110fcfefcf4a2d88ac",
#     "value": 8000000,
#     "value_hex": "7a1200",
#     "confirmations":28691
#   },
# ...
#]}

resp = requests.get('https://blockchain.info/unspent?active=%s' % address)
utxo_set = json.loads(resp.text)["unspent_outputs"]

for utxo in utxo_set:
Ê   print "%s:%d - %ld Satoshis" % (utxo['tx_hash'], utxo['tx_output_n'],
utxo['value'])

En exécutant ce script nous obtenons une liste dÕidentifiants de transactions, le numéro dÕindex dÕun
output de transaction non dépensé (UTXO) et la valeur de cet UTXO en satoshis. Le locking script nÕest
pas affiché dans le résultat Lancement du script get-utxo.py.
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Example 2. Lancement du script get-utxo.py

$ python get-utxo.py
ebadfaa92f1fd29e2fe296eda702c48bd11ffd52313e986e99ddad9084062167:1 - 8000000 Satoshis
6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf:0 - 16050000
Satoshis
74d788804e2aae10891d72753d1520da1206e6f4f20481cc1555b7f2cb44aca0:0 - 5000000 Satoshis
b2affea89ff82557c60d635a2a3137b8f88f12ecec85082f7d0a1f82ee203ac4:0 - 10000000
Satoshis
...

Conditions de dépense (charges)

Les outputs de transactions associent un montant spécifique (en satoshis) à une charge spécifique ou
locking script qui définit les conditions à remplir pour dépenser ce montant. La plupart du temps le
locking script va verrouiller lÕoutput sur une adresse bitcoin spécifique, transférant par conséquent la
possession de ce montant au nouveau propriétaire. Quand Alice a payé le BobÕs Cafe pour son espresso,
sa transaction a créé un output chargé ou verrouillé sur lÕadresse bitcoin du café.  Cet output de 0.015
bitcoin a été enregistré dans la blockchain et ajouté dans le UTXO set et a par conséquent été rendu
visible dans le porte-monnaie de Bob comme faisant partie de son solde disponible. Quand Bob veut
dépenser ce montant, sa transaction va libérer la charge et déverrouiller lÕoutput en fournissant le
locking script contenant la signature provenant de sa clé privée.

Inputs de transaction

On peut définir simplement les inputs de transaction comme étant des pointeurs vers des UTXO. Ils
pointent vers un UTXO spécifique en référençant un hash de transaction et un numéro de séquence ou
est enregistré lÕUTXO dans la blockchain. Pour dépenser un UTXO, un input de transaction inclut
également un script de déverrouillage qui remplit les conditions de dépenses de lÕUTXO. Le script de
déverrouillage est généralement une signature prouvant la possession de lÕadresse bitcoin contenue
dans le locking script.

Quand les utilisateurs effectuent un paiement, leurs porte-monnaies construisent une transaction en
piochant dans les UTXO disponibles. Par exemple, pour effectuer un paiement de 0.015 bitcoin, le
porte-monnaie peut sélectionner un UTXO de 0.0& et un autre de 0.005, pour obtenir le montant désiré.

In Un script pour calculer combien de bitcoins seront émis, we show the use of a "greedy" algorithm to
select from available UTXO in order to make a specific payment amount. In the example, the available
UTXO are provided as a constant array, but in reality, the available UTXO would be retrieved with an
RPC call to Bitcoin Core, or to a third-party API as shown in Un script qui fait appel à lÕAPI
blockchain.info pour trouver les UTXO associés à une adresse.

Example 3. Un script pour calculer combien de bitcoins seront émis
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# Selects outputs from a UTXO list using a greedy algorithm.

from sys import argv

class OutputInfo:

Ê   def __init__(self, tx_hash, tx_index, value):
Ê       self.tx_hash = tx_hash
Ê       self.tx_index = tx_index
Ê       self.value = value

Ê   def __repr__(self):
Ê       return "<%s:%s with %s Satoshis>" % (self.tx_hash, self.tx_index,
Ê                                            self.value)

# Select optimal outputs for a send from unspent outputs list.
# Returns output list and remaining change to be sent to
# a change address.
def select_outputs_greedy(unspent, min_value):
Ê   # Fail if empty.
Ê   if not unspent:
Ê       return None
Ê   # Partition into 2 lists.
Ê   lessers = [utxo for utxo in unspent if utxo.value < min_value]
Ê   greaters = [utxo for utxo in unspent if utxo.value >= min_value]
Ê   key_func = lambda utxo: utxo.value
Ê   if greaters:
Ê       # Not-empty. Find the smallest greater.
Ê       min_greater = min(greaters)
Ê       change = min_greater.value - min_value
Ê       return [min_greater], change
Ê   # Not found in greaters. Try several lessers instead.
Ê   # Rearrange them from biggest to smallest. We want to use the least
Ê   # amount of inputs as possible.
Ê   lessers.sort(key=key_func, reverse=True)
Ê   result = []
Ê   accum = 0
Ê   for utxo in lessers:
Ê       result.append(utxo)
Ê       accum += utxo.value
Ê       if accum >= min_value:
Ê           change = accum - min_value
Ê           return result, "Change: %d Satoshis" % change
Ê   # No results found.
Ê   return None, 0

def main():
Ê   unspent = [
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Ê
OutputInfo("ebadfaa92f1fd29e2fe296eda702c48bd11ffd52313e986e99ddad9084062167", 1,
8000000),
Ê
OutputInfo("6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf", 0,
16050000),
Ê
OutputInfo("b2affea89ff82557c60d635a2a3137b8f88f12ecec85082f7d0a1f82ee203ac4", 0,
10000000),
Ê
OutputInfo("7dbc497969c7475e45d952c4a872e213fb15d45e5cd3473c386a71a1b0c136a1", 0,
25000000),
Ê
OutputInfo("55ea01bd7e9afd3d3ab9790199e777d62a0709cf0725e80a7350fdb22d7b8ec6", 17,
5470541),
Ê
OutputInfo("12b6a7934c1df821945ee9ee3b3326d07ca7a65fd6416ea44ce8c3db0c078c64", 0,
10000000),
Ê
OutputInfo("7f42eda67921ee92eae5f79bd37c68c9cb859b899ce70dba68c48338857b7818", 0,
16100000),
Ê   ]

Ê   if len(argv) > 1:
Ê       target = long(argv[1])
Ê   else:
Ê       target = 55000000

Ê   print "For transaction amount %d Satoshis (%f bitcoin) use: " % (target,
target/10.0**8)
Ê   print select_outputs_greedy(unspent, target)

if __name__ == "__main__":
Ê   main()

Si nous lançons le script  select-utxo.py  sans aucun paramètre, il essaiera de construire un ensemble
dÕUTXO pour un paiement de 55,000,000 satoshis (0.55 bitcoin). Si vous fournissez un montant
spécifique en paramètre, le script va sélectionner des UTXO pour le montant désiré. Dans Lancement
du script elect-utxo.py, nous lançons le script en essayant dÕeffectuer un paiement de 0.5 bitcoin ou
50,000,000 satoshis.
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Example 4. Lancement du script elect-utxo.py

$ python select-utxo.py 50000000
Pour un montant de transaction de 50000000 Satoshis (0.500000 bitcoin) :
([<7dbc497969c7475e45d952c4a872e213fb15d45e5cd3473c386a71a1b0c136a1:0 with 25000000
Satoshis>, <7f42eda67921ee92eae5f79bd37c68c9cb859b899ce70dba68c48338857b7818:0 with
16100000 Satoshis>,
<6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf:0 with 16050000
Satoshis>], 'Change: 7150000 Satoshis')

Une fois les UTXO sélectionnés, le porte-monnaie construit les script de déverrouillage contenant les
signature pour chaque UTXO, les rendant par là dépensables en satisfaisant les conditions du locking
script. Le porte-monnaie ajoute ces référence vers les UTXO et leurs script de déverrouillage en tant
quÕinputs de la transaction. La structure dÕun input de transaction montre la structure dÕun input de
transaction.

Table 3. La structure dÕun input de transaction

Taille Champ Description

32 octets Hash de transaction Pointeur vers la transaction
contenant lÕUTXO à dépenser

4 octets Index de lÕoutput Le numéro dÕindex de lÕUTXO à
dépenser; le premier étant 0

1-9 octets (VarInt) Taille du script de
déverrouillage

Longueur du script de
déverrouillage en octets, (to
follow)

Variable Script de déverrouillage Un script qui remplit les
conditions du script de
verrouillage de lÕUTXO.

4 octets Numéro de séquence Fonctionnalité de remplacement
de transaction actuellement
désactivée, fixé à 0xFFFFFFFF

NOTE

Le numéro de séquence est utilisé afin de ne pas tenir compte dÕune transaction en
fonction de lÕexpiration du temps de verrouillage (locktime) qui est une fonctionnalité
actuellement désactivée dans bitcoin. La plupart des transactions positionnent cette
valeur à la valeur maximale dÕun entier (0xFFFFFFFF) quiest ignorée par le réseau
bitcoin. Si une transaction possède un locktime différent de zéro, au moins un des ses
inputs doit avoir un numéro de séquence inférieur à 0xFFFFFFFF pour activer le
locktime.
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Frais de transaction

La plupart des transactions incluent des frais de transaction qui servent à récompenser les mineurs
pour la sécurisation du réseau. Le minage les frais et les récompenses collectées par les mineurs sont
décrits en détail dans le [ch8]. Cette section décrit comment les frais de transactions sont inclus dans
une transaction classique. La plupart des porte-monnaies calculent et incluent les frais de transactions
automatiquement. Cependant, dans le cas où vous construisez les transactions via du code ou en
utilisant lÕinterface en ligne de commande, vous devez prendre en compte manuellement ces frais les
inclure dans la construction de vos transactions.

Les frais de transaction servent dÕincitation à inclure (miner) une transaction dans le prochain bloc et
aussi à décourager le "spam" de transactions ou tout autre abus du système en imposant un coût faible
pour chaque transaction. Les frais de transaction sont collectés par le mineur qui mine le bloc
contenant la transaction dans la blockchain.

Les frais de transaction sont calculés en fonction de la taille de la transaction en kilo-octet et non en
fonction de la valeur de la transaction en bitcoin. DÕune manière générale, les frais de transaction
dépendent des forces en présence dans le marché du réseau bitcoin. Les mineurs priorisent les
transaction en fonction de différents critères, dont les frais, et peuvent même traiter des transactions
gratuitement dans certaines circonstances. Les frais de transaction affectent la priorité de traitement,
ce qui veut dire quÕune transaction avec des frais insuffisants ou nuls peut se retrouver reportée et
traitée au bon vouloir des mineurs dans les prochains blocs ou bien tout simplement ignorée. Les frais
de transaction ne sont pas obligatoires et les transactions sans frais peuvent être traitées. Cependant,
inclure des frais de transaction améliore la priorisation de leur traitement.

Avec le temps, la façon dont les frais sont calculés et lÕeffet quÕils ont sur la priorisation des
transactions ont évolué. Au debut, les frais de transactions étaient fixes et constants sur le réseau. Petit
à petit, la structure des frais sÕest assouplie de manière à être influencée par les forces de marché en
sÕadaptant à la capacité du réseau et au volume total de transactions. Les frais de transaction minimum
sont actuellement fixés à 0.0001 bitcoin ou un dixième de millibitcoin par kilo-octet, alors quÕil étaient
dÕun millibitcoin auparavant. La plupart des transaction pèsent moins dÕun kilo-octet ; cependant, les
transaction comportant de multiples inputs et outputs peuvent être plus lourdes. Dans les futures
révisions du protocole bitcoin, il est prévu que les application de porte-monnaie utilisent une analyse
statistique pour calculer le frais les plus appropriés à attacher aux transactions en se basant sur les
frais moyens des transaction récentes.

LÕalgorithme actuel utilisés par les mineurs pour prioriser les transaction pour lÕinclusion dans un bloc
en se basant sur les frais est détaillé dans le [ch8].

Ajouter des frais aux transactions

La structure de données des transaction ne comporte pas de champ spécifique au frais. Au lieu de ça,
les frais sont le résultat de la différence entre la somme des input et la somme des outputs. Tout
montant restant une fois que tous les outputs ont été soustraits de tous les inputs représente les frais
qui seront collectés par les mineurs.
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Les frais de transaction sont implicites comme lÕexcédent entre les entrées moins les sorties:

Frais = Somme (Inputs) - Somme (Outputs)

Il sÕagit dÕun élément assez déconcertant des transactions et très important à comprendre car si vous
construisez vos propres transaction, vous devez vous assurer que vous nÕy incluez pas trop de frais en
omettant de dépenser des inputs. Cela veut dire que vous devez prendre tous les inputs en compte, en
créant de la monnaie si nécessaire, ou vous risquez dÕoffrir un gros pourboire au mineurs !

Par exemple, si vous utilisez un UTXO de 20 bitcoins pour faire un paiement de 1 bitcoin, vous devrez
inclure la monnaie via un output de 19 bitcoin vers votre propre porte-monnaie. Dans le cas contraire,
les 19 bitcoins restants seront considérés comme des frais de transaction et seront collectés par les
mineurs qui mineront votre transaction dans un bloc. Malgré le fait que votre transaction aura une
très haute priorité et que vous ferez un mineur très heureux, il est fort probable que ce nÕétait pas le
but recherché initialement.

WARNING

Si vous oubliez dÕajouter un output contenant la monnaie dans une transaction
construite manuellement, vous paierez le montant normalement prévu pour la
monnaie  en frais de transaction. "Garder la monnaie!" nÕest peut-être pas ce que
vous aviez prévu.

Regardons comment cela ce passe en pratique en regardant encore lÕachat du café par Alice. Alive veut
dépenser 0.015 bitcoin pour le payer. Pour être sûr que la transaction soit procédée rapidement, ell
voudra inclure un frais de transaction, disons 0.001. Cela voudra dire que le coût total de la transaction
sera 0.016. Son portefeuille doit donc se procurer un ensemble dÕUTXO qui sÕajoutent à 0.016 ou plus et,
si nécessaire, créer un changement. Disons que son portefeuille a un UTXO disponible de 0.2-bitcoin . Il
devra donc utiliser cet UTXO, créer une sortie pour le café de bob pour 0.015, et une seconde sortie
pour 0.184 bitcoin comme monnaie qui retournera dans son portefeuille, laissant 0.001 bitcoin non
alloué, comme un frais implicite pour la transaction

Regardons maintenant un scénario différent. Eugenia, qui dirige une association caritative pour
enfants aux Philppines, a fini une levée de fond pour acheter des livres dÕécole. Elle a reçu plusieurs
milliers de petites donation du monde entier, atteignant 50 bitcoin, donc son portefeuille est rempli de
petits paiements (UTXO). Maintenant elle veut acheter des centaines de livres dÕécole à un imprimeur
local, en payant en bitcoin.

As EugeniaÕs wallet application tries to construct a single larger payment transaction, it must source
from the available UTXO set, which is composed of many smaller amounts. That means that the
resulting transaction will source from more than a hundred small-value UTXO as inputs and only one
output, paying the book publisher. A transaction with that many inputs will be larger than one
kilobyte, perhaps 2 to 3 kilobytes in size. As a result, it will require a higher fee than the minimal
network fee of 0.0001 bitcoin.

EugeniaÕs wallet application will calculate the appropriate fee by measuring the size of the transaction
and multiplying that by the per-kilobyte fee. Many wallets will overpay fees for larger transactions to
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ensure the transaction is processed promptly. The higher fee is not because Eugenia is spending more
money, but because her transaction is more complex and larger in sizeÑthe fee is independent of the
transactionÕs bitcoin value.

Chaînage de Transactions et Transactions Orphelines
As we have seen, transactions form a chain, whereby one transaction spends the outputs of the
previous transaction (known as the parent) and creates outputs for a subsequent transaction (known
as the child). Sometimes an entire chain of transactions depending on each otherÑsay a parent, child,
and grandchild transactionÑare created at the same time, to fulfill a complex transactional workflow
that requires valid children to be signed before the parent is signed. For example, this is a technique
used in CoinJoin transactions where multiple parties join transactions together to protect their privacy.

When a chain of transactions is transmitted across the network, they donÕt always arrive in the same
order. Sometimes, the child might arrive before the parent. In that case, the nodes that see a child first
can see that it references a parent transaction that is not yet known. Rather than reject the child, they
put it in a temporary pool to await the arrival of its parent and propagate it to every other node. The
pool of transactions without parents is known as the orphan transaction pool. Once the parent arrives,
any orphans that reference the UTXO created by the parent are released from the pool, revalidated
recursively, and then the entire chain of transactions can be included in the transaction pool, ready to
be mined in a block. Transaction chains can be arbitrarily long, with any number of generations
transmitted simultaneously. The mechanism of holding orphans in the orphan pool ensures that
otherwise valid transactions will not be rejected just because their parent has been delayed and that
eventually the chain they belong to is reconstructed in the correct order, regardless of the order of
arrival.

There is a limit to the number of orphan transactions stored in memory, to prevent a denial-of-service
attack against bitcoin nodes. The limit is defined as MAX_ORPHAN_TRANSACTIONS in the source code
of the bitcoin reference client. If the number of orphan transactions in the pool exceeds
MAX_ORPHAN_TRANSACTIONS, one or more randomly selected orphan transactions are evicted from
the pool, until the pool size is back within limits.

Script des Transactions et Langage de Script
Bitcoin clients validate transactions by executing a script, written in a Forth-like scripting language.
Both the locking script (encumbrance) placed on a UTXO and the unlocking script that usually contains
a signature are written in this scripting language. When a transaction is validated, the unlocking script
in each input is executed alongside the corresponding locking script to see if it satisfies the spending
condition.

Today, most transactions processed through the bitcoin network have the form "Alice pays Bob" and
are based on the same script called a Pay-to-Public-Key-Hash script. However, the use of scripts to lock
outputs and unlock inputs means that through use of the programming language, transactions can
contain an infinite number of conditions. Bitcoin transactions are not limited to the "Alice pays Bob"
form and pattern.
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This is only the tip of the iceberg of possibilities that can be expressed with this scripting language. In
this section, we will demonstrate the components of the bitcoin transaction scripting language and
show how it can be used to express complex conditions for spending and how those conditions can be
satisfied by unlocking scripts.

TIP

La validation des transactions Bitcoin nÕest pas basée sur un modèle statique, mais au
contraire par lÕexécution dÕun langage de script. Ce langage permet dÕexprimer une
variété presque infinie de conditions. CÕest ainsi que bitcoin prend la caractéristique de
"lÕargent programmable".

Construction de Script (Vérrouillage + Déverrouillage)

BitcoinÕs transaction validation engine relies on two types of scripts to validate transactions: a locking
script and an unlocking script.

A locking script is an encumbrance placed on an output, and it specifies the conditions that must be
met to spend the output in the future. Historically, the locking script was called a scriptPubKey, because
it usually contained a public key or bitcoin address. In this book we refer to it as a "locking script" to
acknowledge the much broader range of possibilities of this scripting technology. In most bitcoin
applications, what we refer to as a locking script will appear in the source code as scriptPubKey.

An unlocking script is a script that "solves," or satisfies, the conditions placed on an output by a locking
script and allows the output to be spent. Unlocking scripts are part of every transaction input, and
most of the time they contain a digital signature produced by the userÕs wallet from his or her private
key. Historically, the unlocking script is called scriptSig, because it usually contained a digital signature.
In most bitcoin applications, the source code refers to the unlocking script as scriptSig. In this book, we
refer to it as an "unlocking script" to acknowledge the much broader range of locking script
requirements, because not all unlocking scripts must contain signatures.

Every bitcoin client will validate transactions by executing the locking and unlocking scripts together.
For each input in the transaction, the validation software will first retrieve the UTXO referenced by the
input. That UTXO contains a locking script defining the conditions required to spend it. The validation
software will then take the unlocking script contained in the input that is attempting to spend this
UTXO and execute the two scripts.

In the original bitcoin client, the unlocking and locking scripts were concatenated and executed in
sequence. For security reasons, this was changed in 2010, because of a vulnerability that allowed a
malformed unlocking script to push data onto the stack and corrupt the locking script. In the current
implementation, the scripts are executed separately with the stack transferred between the two
executions, as described next.

First, the unlocking script is executed, using the stack execution engine. If the unlocking script
executed without errors (e.g., it has no "dangling" operators left over), the main stack (not the alternate
stack) is copied and the locking script is executed. If the result of executing the locking script with the
stack data copied from the unlocking script is "TRUE," the unlocking script has succeeded in resolving
the conditions imposed by the locking script and, therefore, the input is a valid authorization to spend
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the UTXO. If any result other than "TRUE" remains after execution of the combined script, the input is
invalid because it has failed to satisfy the spending conditions placed on the UTXO. Note that the UTXO
is permanently recorded in the blockchain, and therefore is invariable and is unaffected by failed
attempts to spend it by reference in a new transaction. Only a valid transaction that correctly satisfies
the conditions of the UTXO results in the UTXO being marked as "spent" and removed from the set of
available (unspent) UTXO.

Combining scriptSig and scriptPubKey to evaluate a transaction script is an example of the unlocking
and locking scripts for the most common type of bitcoin transaction (a payment to a public key hash),
showing the combined script resulting from the concatenation of the unlocking and locking scripts
prior to script validation.

Figure 1. Combining scriptSig and scriptPubKey to evaluate a transaction script

Langage de Scripting

The bitcoin transaction script language, called Script, is a Forth-like reverse-polish notation stack-based
execution language. If that sounds like gibberish, you probably havenÕt studied 1960Õs programming
languages. Script is a very simple language that was designed to be limited in scope and executable on
a range of hardware, perhaps as simple as an embedded device, such as a handheld calculator. It
requires minimal processing and cannot do many of the fancy things modern programming languages
can do. In the case of programmable money, that is a deliberate security feature.

BitcoinÕs scripting language is called a stack-based language because it uses a data structure called a
stack. A stack is a very simple data structure, which can be visualized as a stack of cards. A stack allows
two operations: push and pop. Push adds an item on top of the stack. Pop removes the top item from
the stack.

The scripting language executes the script by processing each item from left to right. Numbers (data
constants) are pushed onto the stack. Operators push or pop one or more parameters from the stack,
act on them, and might push a result onto the stack. For example, OP_ADD will pop two items from the
stack, add them, and push the resulting sum onto the stack.

Conditional operators evaluate a condition, producing a boolean result of TRUE or FALSE. For example,
OP_EQUAL pops two items from the stack and pushes TRUE (TRUE is represented by the number 1) if
they are equal or FALSE (represented by zero) if they are not equal. Bitcoin transaction scripts usually

16



contain a conditional operator, so that they can produce the TRUE result that signifies a valid
transaction.

In BitcoinÕs script validation doing simple math, the script 2 3 OP_ADD 5 OP_EQUAL demonstrates the
arithmetic addition operator OP_ADD, adding two numbers and putting the result on the stack,
followed by the conditional operator OP_EQUAL, which checks that the resulting sum is equal to 5. For
brevity, the OP_ prefix is omitted in the step-by-step example.

The following is a slightly more complex script, which calculates 2 + 7 Ð 3 + 1. Notice that when the
script contains several operators in a row, the stack allows the results of one operator to be acted upon
by the next operator:

2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL

Try validating the preceding script yourself using pencil and paper. When the script execution ends,
you should be left with the value TRUE on the stack.

Although most locking scripts refer to a bitcoin address or public key, thereby requiring proof of
ownership to spend the funds, the script does not have to be that complex. Any combination of locking
and unlocking scripts that results in a TRUE value is valid. The simple arithmetic we used as an
example of the scripting language is also a valid locking script that can be used to lock a transaction
output.

Use part of the arithmetic example script as the locking script:

3 OP_ADD 5 OP_EQUAL

which can be satisfied by a transaction containing an input with the unlocking script:

2

The validation software combines the locking and unlocking scripts and the resulting script is:

2 3 OP_ADD 5 OP_EQUAL

As we saw in the step-by-step example in BitcoinÕs script validation doing simple math, when this
script is executed, the result is OP_TRUE, making the transaction valid. Not only is this a valid
transaction output locking script, but the resulting UTXO could be spent by anyone with the arithmetic
skills to know that the number 2 satisfies the script.
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Figure 2. BitcoinÕs script validation doing simple math

TIP

Transactions are valid if the top result on the stack is TRUE (noted as &#x7b;0x01&#x7d;),
any other non-zero value or if the stack is empty after script execution. Transactions are
invalid if the top value on the stack is FALSE (a zero-length empty value, noted as
&#x7b;&#x7d;) or if script execution is halted explicitly by an operator, such as
OP_VERIFY, OP_RETURN, or a conditional terminator such as OP_ENDIF. See
[tx_script_ops] for details.

Turing Incompleteness

The bitcoin transaction script language contains many operators, but is deliberately limited in one
important wayÑthere are no loops or complex flow control capabilities other than conditional flow
control. This ensures that the language is not Turing Complete, meaning that scripts have limited
complexity and predictable execution times. Script is not a general-purpose language. These
limitations ensure that the language cannot be used to create an infinite loop or other form of "logic
bomb" that could be embedded in a transaction in a way that causes a denial-of-service attack against
the bitcoin network. Remember, every transaction is validated by every full node on the bitcoin
network. A limited language prevents the transaction validation mechanism from being used as a
vulnerability.

Stateless Verification

The bitcoin transaction script language is stateless, in that there is no state prior to execution of the
script, or state saved after execution of the script. Therefore, all the information needed to execute a
script is contained within the script. A script will predictably execute the same way on any system. If
your system verifies a script, you can be sure that every other system in the bitcoin network will also
verify the script, meaning that a valid transaction is valid for everyone and everyone knows this. This
predictability of outcomes is an essential benefit of the bitcoin system.

Transactions Standard
In the first few years of bitcoinÕs development, the developers introduced some limitations in the types
of scripts that could be processed by the reference client. These limitations are encoded in a function
called isStandard(), which defines five types of "standard" transactions. These limitations are
temporary and might be lifted by the time you read this. Until then, the five standard types of
transaction scripts are the only ones that will be accepted by the reference client and most miners who
run the reference client. Although it is possible to create a nonstandard transaction containing a script
that is not one of the standard types, you must find a miner who does not follow these limitations to
mine that transaction into a block.

Check the source code of the Bitcoin Core client (the reference implementation) to see what is
currently allowed as a valid transaction script.

The five standard types of transaction scripts are pay-to-public-key-hash (P2PKH), public-key, multi-
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signature (limited to 15 keys), pay-to-script-hash (P2SH), and data output (OP_RETURN), which are
described in more detail in the following sections.

Pay-to-Public-Key-Hash (P2PKH)

The vast majority of transactions processed on the bitcoin network are P2PKH transactions. These
contain a locking script that encumbers the output with a public key hash, more commonly known as a
bitcoin address. Transactions that pay a bitcoin address contain P2PKH scripts. An output locked by a
P2PKH script can be unlocked (spent) by presenting a public key and a digital signature created by the
corresponding private key.

For example, letÕs look at AliceÕs payment to BobÕs Cafe again. Alice made a payment of 0.015 bitcoin to
the cafeÕs bitcoin address. That transaction output would have a locking script of the form:

OP_DUP OP_HASH160 <Cafe Public Key Hash> OP_EQUAL OP_CHECKSIG

The Cafe Public Key Hash is equivalent to the bitcoin address of the cafe, without the Base58Check
encoding. Most applications would show the public key hash in hexadecimal encoding and not the
familiar bitcoin address Base58Check format that begins with a "1".

The preceding locking script can be satisfied with an unlocking script of the form:

<Cafe Signature> <Cafe Public Key>

The two scripts together would form the following combined validation script:

<Cafe Signature> <Cafe Public Key> OP_DUP OP_HASH160
<Cafe Public Key Hash> OP_EQUAL OP_CHECKSIG

When executed, this combined script will evaluate to TRUE if, and only if, the unlocking script matches
the conditions set by the locking script. In other words, the result will be TRUE if the unlocking script
has a valid signature from the cafeÕs private key that corresponds to the public key hash set as an
encumbrance.

Figures <xref linkend="P2PubKHash1" xrefstyle="select: labelnumber"/> and <xref
linkend="P2PubKHash2" xrefstyle="select: labelnumber"/> show (in two parts) a step-by-step execution
of the combined script, which will prove this is a valid transaction.
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Figure 3. Evaluating a script for a P2PKH transaction (Part 1 of 2)

Pay-to-Public-Key

Pay-to-public-key is a simpler form of a bitcoin payment than pay-to-public-key-hash. With this script
form, the public key itself is stored in the locking script, rather than a public-key-hash as with P2PKH
earlier, which is much shorter. Pay-to-public-key-hash was invented by Satoshi to make bitcoin
addresses shorter, for ease of use. Pay-to-public-key is now most often seen in coinbase transactions,
generated by older mining software that has not been updated to use P2PKH.

A pay-to-public-key locking script looks like this:

<Public Key A> OP_CHECKSIG

The corresponding unlocking script that must be presented to unlock this type of output is a simple
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signature, like this:

<Signature from Private Key A>

The combined script, which is validated by the transaction validation software, is:

<Signature from Private Key A> <Public Key A> OP_CHECKSIG

This script is a simple invocation of the CHECKSIG operator, which validates the signature as belonging
to the correct key and returns TRUE on the stack.
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Figure 4. Evaluating a script for a P2PKH transaction (Part 2 of 2)

Multi-Signature

Multi-signature scripts set a condition where N public keys are recorded in the script and at least M of
those must provide signatures to release the encumbrance. This is also known as an M-of-N scheme,
where N is the total number of keys and M is the threshold of signatures required for validation. For
example, a 2-of-3 multi-signature is one where three public keys are listed as potential signers and at
least two of those must be used to create signatures for a valid transaction to spend the funds. At this
time, standard multi-signature scripts are limited to at most 15 listed public keys, meaning you can do
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anything from a 1-of-1 to a 15-of-15 multi-signature or any combination within that range. The
limitation to 15 listed keys might be lifted by the time this book is published, so check the isStandard()
function to see what is currently accepted by the network.

The general form of a locking script setting an M-of-N multi-signature condition is:

M <Public Key 1> <Public Key 2> ... <Public Key N> N OP_CHECKMULTISIG

where N is the total number of listed public keys and M is the threshold of required signatures to
spend the output.

A locking script setting a 2-of-3 multi-signature condition looks like this:

2 <Public Key A> <Public Key B> <Public Key C> 3 OP_CHECKMULTISIG

The preceding locking script can be satisfied with an unlocking script containing pairs of signatures
and public keys:

OP_0 <Signature B> <Signature C>

or any combination of two signatures from the private keys corresponding to the three listed public
keys.

NOTE

The prefix OP_0 is required because of a bug in the original implementation of
CHECKMULTISIG where one item too many is popped off the stack. It is ignored by
CHECKMULTISIG and is simply a placeholder.

The two scripts together would form the combined validation script:

OP_0 <Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3
OP_CHECKMULTISIG

When executed, this combined script will evaluate to TRUE if, and only if, the unlocking script matches
the conditions set by the locking script. In this case, the condition is whether the unlocking script has a
valid signature from the two private keys that correspond to two of the three public keys set as an
encumbrance.

Data Output (OP_RETURN)

BitcoinÕs distributed and timestamped ledger, the blockchain, has potential uses far beyond payments.
Many developers have tried to use the transaction scripting language to take advantage of the security
and resilience of the system for applications such as digital notary services, stock certificates, and
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smart contracts. Early attempts to use bitcoinÕs script language for these purposes involved creating
transaction outputs that recorded data on the blockchain; for example, to record a digital fingerprint of
a file in such a way that anyone could establish proof-of-existence of that file on a specific date by
reference to that transaction.

The use of bitcoinÕs blockchain to store data unrelated to bitcoin payments is a controversial subject.
Many developers consider such use abusive and want to discourage it. Others view it as a
demonstration of the powerful capabilities of blockchain technology and want to encourage such
experimentation. Those who object to the inclusion of non-payment data argue that it causes
"blockchain bloat," burdening those running full bitcoin nodes with carrying the cost of disk storage
for data that the blockchain was not intended to carry. Moreover, such transactions create UTXO that
cannot be spent, using the destination bitcoin address as a free-form 20-byte field. Because the address
is used for data, it doesnÕt correspond to a private key and the resulting UTXO can never be spent; itÕs a
fake payment. These transactions that can never be spent are therefore never removed from the UTXO
set and cause the size of the UTXO database to forever increase, or "bloat."

In version 0.9 of the Bitcoin Core client, a compromise was reached with the introduction of the
OP_RETURN operator. OP_RETURN allows developers to add 80 bytes of nonpayment data to a
transaction output. However, unlike the use of "fake" UTXO, the OP_RETURN operator creates an
explicitly provably unspendable output, which does not need to be stored in the UTXO set. OP_RETURN
outputs are recorded on the blockchain, so they consume disk space and contribute to the increase in
the blockchainÕs size, but they are not stored in the UTXO set and therefore do not bloat the UTXO
memory pool and burden full nodes with the cost of more expensive RAM.

Les scripts OP_RETURN ressemblent à ceci :

OP_RETURN <data>

The data portion is limited to 80 bytes and most often represents a hash, such as the output from the
SHA256 algorithm (32 bytes). Many applications put a prefix in front of the data to help identify the
application. For example, the Proof of Existence digital notarization service uses the 8-byte prefix
"DOCPROOF," which is ASCII encoded as 44f4350524f4f46 in hexadecimal.

Keep in mind that there is no "unlocking script" that corresponds to OP_RETURN that could possibly be
used to "spend" an OP_RETURN output. The whole point of OP_RETURN is that you canÕt spend the
money locked in that output, and therefore it does not need to be held in the UTXO set as potentially
spendableÑOP_RETURN is provably un-spendable. OP_RETURN is usually an output with a zero bitcoin
amount, because any bitcoin assigned to such an output is effectively lost forever. If an OP_RETURN is
encountered by the script validation software, it results immediately in halting the execution of the
validation script and marking the transaction as invalid. Thus, if you accidentally reference an
OP_RETURN output as an input in a transaction, that transaction is invalid.

A standard transaction (one that conforms to the isStandard() checks) can have only one OP_RETURN
output. However, a single OP_RETURN output can be combined in a transaction with outputs of any
other type.
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Two new command-line options have been added in Bitcoin Core as of version 0.10. The option
datacarrier controls relay and mining of OP_RETURN transactions, with the default set to "1" to allow
them. The option datacarriersize takes a numeric argument specifying the maximum size in bytes of
the OP_RETURN data, 40 bytes by default.

NOTE

OP_RETURN was initially proposed with a limit of 80 bytes, but the limit was reduced to
40 bytes when the feature was released. In February 2015, in version 0.10 of Bitcoin
Core, the limit was raised back to 80 bytes. Nodes may choose not to relay or mine
OP_RETURN, or only relay and mine OP_RETURN containing less than 80 bytes of data.

Pay-to-Script-Hash (P2SH)

Pay-to-script-hash (P2SH) was introduced in 2012 as a powerful new type of transaction that greatly
simplifies the use of complex transaction scripts. To explain the need for P2SH, letÕs look at a practical
example.

In [ch01_intro_what_is_bitcoin] we introduced Mohammed, an electronics importer based in Dubai.
MohammedÕs company uses bitcoinÕs multi-signature feature extensively for its corporate accounts.
Multi-signature scripts are one of the most common uses of bitcoinÕs advanced scripting capabilities
and are a very powerful feature. MohammedÕs company uses a multi-signature script for all customer
payments, known in accounting terms as "accounts receivable," or AR. With the multi-signature
scheme, any payments made by customers are locked in such a way that they require at least two
signatures to release, from Mohammed and one of his partners or from his attorney who has a backup
key. A multi-signature scheme like that offers corporate governance controls and protects against theft,
embezzlement, or loss.

Le script résultant est assez long et ressemble à ceci:

2 <Mohammed's Public Key> <Partner1 Public Key> <Partner2 Public Key> <Partner3 Public
Key> <Attorney Public Key> 5 OP_CHECKMULTISIG

Although multi-signature scripts are a powerful feature, they are cumbersome to use. Given the
preceding script, Mohammed would have to communicate this script to every customer prior to
payment. Each customer would have to use special bitcoin wallet software with the ability to create
custom transaction scripts, and each customer would have to understand how to create a transaction
using custom scripts. Furthermore, the resulting transaction would be about five times larger than a
simple payment transaction, because this script contains very long public keys. The burden of that
extra-large transaction would be borne by the customer in the form of fees. Finally, a large transaction
script like this would be carried in the UTXO set in RAM in every full node, until it was spent. All of
these issues make using complex output scripts difficult in practice.

Pay-to-script-hash (P2SH) was developed to resolve these practical difficulties and to make the use of
complex scripts as easy as a payment to a bitcoin address. With P2SH payments, the complex locking
script is replaced with its digital fingerprint, a cryptographic hash. When a transaction attempting to
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spend the UTXO is presented later, it must contain the script that matches the hash, in addition to the
unlocking script. In simple terms, P2SH means "pay to a script matching this hash, a script that will be
presented later when this output is spent."

In P2SH transactions, the locking script that is replaced by a hash is referred to as the redeem script
because it is presented to the system at redemption time rather than as a locking script. Script
complexe sans P2SH shows the script without P2SH and Script complexe avec P2SH shows the same
script encoded with P2SH.

Table 4. Script complexe sans P2SH

Locking Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5
OP_CHECKMULTISIG

Unlocking Script Sig1 Sig2

Table 5. Script complexe avec P2SH

Redeem Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5
OP_CHECKMULTISIG

Locking Script OP_HASH160 <20-byte hash of redeem script>
OP_EQUAL

Unlocking Script Sig1 Sig2 redeem script

As you can see from the tables, with P2SH the complex script that details the conditions for spending
the output (redeem script) is not presented in the locking script. Instead, only a hash of it is in the
locking script and the redeem script itself is presented later, as part of the unlocking script when the
output is spent. This shifts the burden in fees and complexity from the sender to the recipient
(spender) of the transaction.

LetÕs look at MohammedÕs company, the complex multi-signature script, and the resulting P2SH scripts.

First, the multi-signature script that MohammedÕs company uses for all incoming payments from
customers:

2 <Mohammed's Public Key> <Partner1 Public Key> <Partner2 Public Key> <Partner3 Public
Key> <Attorney Public Key> 5 OP_CHECKMULTISIG

If the placeholders are replaced by actual public keys (shown here as 520-bit numbers starting with 04)
you can see that this script becomes very long:
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2
04C16B8698A9ABF84250A7C3EA7EEDEF9897D1C8C6ADF47F06CF73370D74DCCA01CDCA79DCC5C395D7EEC6984
D83F1F50C900A24DD47F569FD4193AF5DE762C58704A2192968D8655D6A935BEAF2CA23E3FB87A3495E7AF308
EDF08DAC3C1FCBFC2C75B4B0F4D0B1B70CD2423657738C0C2B1D5CE65C97D78D0E34224858008E8B49047E632
48B75DB7379BE9CDA8CE5751D16485F431E46117B9D0C1837C9D5737812F393DA7D4420D7E1A9162F0279CFC1
0F1E8E8F3020DECDBC3C0DD389D99779650421D65CBD7149B255382ED7F78E946580657EE6FDA162A187543A9
D85BAAA93A4AB3A8F044DADA618D087227440645ABE8A35DA8C5B73997AD343BE5C2AFD94A5043752580AFA1E
CED3C68D446BCAB69AC0BA7DF50D56231BE0AABF1FDEEC78A6A45E394BA29A1EDF518C022DD618DA774D207D1
37AAB59E0B000EB7ED238F4D800 5 OP_CHECKMULTISIG

This entire script can instead be represented by a 20-byte cryptographic hash, by first applying the
SHA256 hashing algorithm and then applying the RIPEMD160 algorithm on the result. The 20-byte hash
of the preceding script is:

54c557e07dde5bb6cb791c7a540e0a4796f5e97e

A P2SH transaction locks the output to this hash instead of the longer script, using the locking script:

OP_HASH160 54c557e07dde5bb6cb791c7a540e0a4796f5e97e OP_EQUAL

which, as you can see, is much shorter. Instead of "pay to this 5-key multi-signature script," the P2SH
equivalent transaction is "pay to a script with this hash." A customer making a payment to
MohammedÕs company need only include this much shorter locking script in his payment. When
Mohammed wants to spend this UTXO, they must present the original redeem script (the one whose
hash locked the UTXO) and the signatures necessary to unlock it, like this:

<Sig1> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG>

The two scripts are combined in two stages. First, the redeem script is checked against the locking
script to make sure the hash matches:

<2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG> OP_HASH160 <redeem scriptHash> OP_EQUAL

If the redeem script hash matches, the unlocking script is executed on its own, to unlock the redeem
script:

<Sig1> <Sig2> 2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG
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Adresses Pay-to-script-hash

Another important part of the P2SH feature is the ability to encode a script hash as an address, as
defined in BIP0013. P2SH addresses are Base58Check encodings of the 20-byte hash of a script, just like
bitcoin addresses are Base58Check encodings of the 20-byte hash of a public key. P2SH addresses use
the version prefix "5", which results in Base58Check-encoded addresses that start with a "3". For
example, MohammedÕs complex script, hashed and Base58Check-encoded as a P2SH address becomes
39RF6JqABiHdYHkfChV6USGMe6Nsr66Gzw. Now, Mohammed can give this "address" to his customers
and they can use almost any bitcoin wallet to make a simple payment, as if it were a bitcoin address.
The 3 prefix gives them a hint that this is a special type of address, one corresponding to a script
instead of a public key, but otherwise it works in exactly the same way as a payment to a bitcoin
address.

Les adresses P2SH cache toute la complexité pour que la personne qui fait un paiement ne voit pas le
script.

Bénéfices de Pay-to-script-hash

The pay-to-script-hash feature offers the following benefits compared to the direct use of complex
scripts in locking outputs:

¥ Les scripts complexes sont remplacés par des empreintes plus petites dans la sortie de la
transaction diminuant sa taille.

¥ Scripts can be coded as an address, so the sender and the senderÕs wallet donÕt need complex
engineering to implement P2SH.

¥ P2SH transfère le travail de la construction du script au receiveur et non à lÕenvoyeur.

¥ P2SH shifts the burden in data storage for the long script from the output (which is in the UTXO set)
to the input (stored on the blockchain).

¥ P2SH shifts the burden in data storage for the long script from the present time (payment) to a
future time (when it is spent).

¥ P2SH shifts the transaction fee cost of a long script from the sender to the recipient, who has to
include the long redeem script to spend it.

Redeem script and isStandard validation

Prior to version 0.9.2 of the Bitcoin Core client, pay-to-script-hash was limited to the standard types of
bitcoin transaction scripts, by the isStandard() function. That means that the redeem script presented
in the spending transaction could only be one of the standard types: P2PK, P2PKH, or multi-sig nature,
excluding OP_RETURN and P2SH itself.

Dans la version 0.9.2 du client Bitcoin Core, les transactions P2SH peuvent contenir nÕimporte quel
script valide, rendant le standard P2SH bien plus flexible et permettant lÕexpérimentation de nouveaux
et complexes types de transactions.
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Note that you are not able to put a P2SH inside a P2SH redeem script, because the P2SH specification is
not recursive. You are also still not able to use OP_RETURN in a redeem script because OP_RETURN
cannot be redeemed by definition.

Note that because the redeem script is not presented to the network until you attempt to spend a P2SH
output, if you lock an output with the hash of an invalid transaction it will be processed regardless.
However, you will not be able to spend it because the spending transaction, which includes the redeem
script, will not be accepted because it is an invalid script. This creates a risk, because you can lock
bitcoin in a P2SH that cannot be spent later. The network will accept the P2SH encumbrance even if it
corresponds to an invalid redeem script, because the script hash gives no indication of the script it
represents.

WARNING

P2SH locking scripts contain the hash of a redeem script, which gives no clues as to
the content of the redeem script itself. The P2SH transaction will be considered
valid and accepted even if the redeem script is invalid. You might accidentally lock
bitcoin in such a way that it cannot later be spent.
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Le réseau Bitcoin

LÕarchitecture réseau pair-à-pair
Bitcoin est une architecture réseau pair-à-pair au-dessus dÕInternet. Le terme pair-à-pair, ou P2P,
signifie que les ordinateurs qui participent au réseau sont les pairs les uns des autres, quÕils sont tous
égaux, quÕil nÕy a pas de noeuds "spéciaux", et que tous les noeuds ont à charge de fournir des services
réseau. Les noeuds du réseau sÕinterconnectent en un réseau maillé (mesh network) avec une
topologie "plate". Il nÕy a pas de serveur, pas de service centralisé, et pas de hiérarchie au sein du
réseau. Les noeuds dÕun réseau pair-à-pair à la fois fournissent et consomment des services, la
réciprocité agissant comme une motivation pour participer. Les réseaux pair-à-pair sont
intrinsèquement résilients, décentralisés, et ouverts. LÕexemple par excellence dÕune architecture
réseau P2P était lÕInternet lui-même à ces débuts, où les noeuds sur le réseau IP étaient égaux.
AujourdÕhui, lÕarchitecture dÕInternet est plus hiérarchique, mais le Protocole Internet (IP) conserve sa
topologie plate. Au-delà du bitcoin, lÕapplication la plus large et fructueuse des technologies P2P est le
partage de fichiers avec Napster en tant que pionnier et BitTorrent comme la plus récente évolution de
lÕarchitecture.

LÕarchitecture réseau P2P Bitcoin est bien plus quÕun choix de topologie. Bitcoin fut conçu comme un
système pair-à-pair dÕargent digital, et son architecture réseau est à la fois le reflet et le fondement de
cette caractéristique essentielle. La décentralisation du contrôle est un principe fondamentale du
design et ceci ne pouvait être réalisé et maintenu que par un consensus de réseau P2P décentralisé et
plat.

Le terme "réseau bitcoin" fait référence à lÕensemble des noeuds exécutant le protocole P2P bitcoin. En
plus du protocole P2P bitcoin, il existe dÕautres protocoles tels que Stratum, lesquels sont utilisés pour
le minage et les portefeuilles légers ou mobiles. Ces protocoles additionnels sont pourvus par des
serveurs de passerelle (gateway routing servers) qui accèdent au réseau bitcoin en utilisant le
protocole P2P bitcoin, puis étendent ce réseau aux noeuds exécutant dÕautres protocoles. Par exemple,
les serveurs Stratum connectent les noeuds de minage Stratum via le protocole Stratum sur le réseau
bitcoin principal et rattachent le protocole Stratum au protocole P2P bitcoin. On utilise le terme de
"réseau bitcoin étendu" pour faire référence à lÕensemble du réseau, lequel inclu le protocole P2P
bitcoin, les protocoles servant au minage (pool-mining protocols), le protocole Stratum, et tout autres
protocoles reliant les différents composants du système bitcoin.

Types et rôles des noeuds
Bien que les noeuds du réseau P2P bitcoin soient égaux, ils peuvent avoir différents rôles selon leur
fonction. Un nÏud bitcoin est un ensemble de fonctions : routage, base de donnée blockchain, minage,
et portefeuille. Un Ç nÏud complet È (full node) possédant ces quatre fonctions est représenté dans Un
nÏud du réseau bitcoin possédant les quatre fonctions : portefeuille, mineur, base de données
blockchain complète, et routage.

1



Figure 1. Un nÏud du réseau bitcoin possédant les quatre fonctions : portefeuille, mineur, base de
données blockchain complète, et routage

Tous les noeuds comprennent la fonction de routage pour faire partie du réseau et peuvent avoir
dÕautres fonctionnalités. Tous les noeuds valident et propagent transactions et blocs, découvrent et
maintiennent les connections aux pairs. Dans lÕexemple du nÏud complet dans Un nÏud du réseau
bitcoin possédant les quatre fonctions : portefeuille, mineur, base de données blockchain complète, et
routage, la fonction de routage est indiquée par un cercle orange nommé "Noeud de routage réseau."

Certains noeuds, appelés noeuds complets, conservent aussi une copie complète et à jour de la
blockchain. Les noeuds complets peuvent vérifier de façon autonome et avec autorité nÕimporte quelle
transaction sans référence externe. Quelques noeuds conservent seulement un sous-ensemble de la
blockchain et vérifient les transactions en utilisant une méthode appelée vérification de paiement
simplifiée, ou SPV (simplified payment verification). Ces noeuds sont connus comme SPV ou noeuds
légers. Dans lÕexemple du nÏud complet sur le schéma, la fonction de base de données blockchain du
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nÏud complet est indiquée par un cercle bleu nommé "Blockchain complète." Dans Le réseau bitcoin
étendu montrant les différents types de nÏuds, les passerelles et les protocoles, les noeuds SPV sont
représentés sans cercle bleu, indiquant quÕils ne possèdent pas une copie complète de la blockchain.

Les noeuds de minage rivalisent entre eux pour créer de nouveaux blocs, utilisant du matériel
informatique spécialisé en vue de résoudre lÕalgorithme preuve-de-travail. Certains noeuds de minage
sont aussi des noeuds complets, conservant une copie complète de la blockchain, pendant que dÕautres
sont des noeuds légers faisant partie dÕune pool de minage et dépendent dÕun serveur de pool pour
maintenir un nÏud complet. La fonction de minage est représentée dans le nÏud complet par un
cercle noir nommé "Mineur."

Les portefeuilles utilisateur peuvent faire partie dÕun nÏud complet, comme cÕest généralement le cas
avec les clients bitcoin sur les ordinateurs de bureau. De plus en plus, de nombreux portefeuilles
utilisateur, spécialement ceux sÕexécutant sur des appareils aux ressources limitées tels que les
smartphones, sont des noeuds SPV. La fonction de portefeuille est représentée dans Un nÏud du
réseau bitcoin possédant les quatre fonctions : portefeuille, mineur, base de données blockchain
complète, et routage par un cercle vert nommé "Portefeuille".

Outre les principaux types de noeuds sur le protocole bitcoin P2P, il y a des serveurs et des noeuds
utilisant dÕautres protocoles, tels que les protocoles spécialisés de pool de minage et les protocoles de
clients légers et dÕaccès.

Les différents types de nÏuds sur le réseau bitcoin étendu représente les types de noeuds les plus
communs sur le réseau étendu bitcoin.

Le réseau étendu bitcoin
Le réseau bitcoin principal, utilisant le protocole P2P bitcoin, est composé dÕenviron 7000 à 10 000
noeuds en écoute, exécutant divers versions du client de référence bitcoin (Bitcoin Core) et quelques
centaines de noeuds exécutant divers autres implementations du protocole P2P bitcoin, telles que
BitcoinJ, Libbitcoin, et btcd. Un faible pourcentage des noeuds sur le réseau P2P bitcoin sont aussi des
noeuds de minage, rivalisant dans le processus de minage, validant les transactions, et créant de
nouveaux blocs. Divers grandes entreprises sÕinterfacent avec le réseau bitcoin en exécutant des
noeuds complets, clients basés sur le client Bitcoin Core, avec des copies complètes de la blockchain et
un nÏud de réseau, mais sans les fonctions de minage ou de portefeuille. Ces noeuds agissent comme
des routeurs de périphérie (network edge routers), permettant à divers autres services (places de
marché, portefeuilles, explorateurs de blocs, traitement des paiements marchand) de bâtir par-dessus.

Le réseau bitcoin étendu inclut le réseau exécutant le protocole P2P bitcoin, décrit précédemment, de
même que les noeuds exécutant des protocoles spécialisés. Rattaché au réseau P2P bitcoin principal,
nous avons un certain nombre de serveurs de pool et de passerelles de protocole (protocol gateways)
qui connectent les noeuds exécutant dÕautres protocoles. Ces autres noeuds de protocole sont pour la
plupart des noeuds de minage en pool (see [ch8]) et des portefeuilles-clients léger, qui ne conservent
pas une copie complète de la blockchain.

Le réseau bitcoin étendu montrant les différents types de nÏuds, les passerelles et les protocoles
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représente le réseau bitcoin étendu avec les divers types de noeuds, les serveurs passerelle (gateway
servers), les routeurs de périphérie (edge routers), et les clients-portefeuille ainsi que les divers
protocoles quÕils utilisent pour se connecter les uns aux autres.
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Figure 2. Les différents types de nÏuds sur le réseau bitcoin étendu
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Figure 3. Le réseau bitcoin étendu montrant les différents types de nÏuds, les passerelles et les protocoles

Découverte du réseau
LorsquÕun un nouveau node démarre, il doit découvrir les autres noeuds sur le réseau afin dÕy prendre
part. Pour commencer ce processus, un nouveau nÏud doit découvrir au moins un autre nÏud
existant sur ce réseau et sÕy connecter. La position géographique des autres noeuds nÕest pas
importante; la topologie du réseau bitcoin nÕétant pas géographiquement définie. Par conséquent,
nÕimporte quel nÏud bitcoin existant peut être sélectionné au hasard.

Pour se connecter à un pair connu, les noeuds établissent une connexion TCP, habituellement sur le
port 8333 (le port généralement connu comme étant celui utilisé par bitcoin), ou un port alternatif si
disponible. Lors de la connexion, le nÏud va démarrer une prise de contact ou "handshake" (see La
prise de contact initiale entre pairs) en transmettant un message de version, lequel contient des
informations basiques dÕidentification, incluant :

PROTOCOL_VERSION

Une constante qui définie la version du protocole P2P bitcoin que le client "parle" (e.g., 70002)

nLocalServices

Une liste de services locaux supportés par le nÏud, actuellement juste NODE_NETWORK

nTime

La date actuelle

addrYou

LÕadresse IP du nÏud distant telle que vue à partir de ce nÏud

addrMe

LÕadresse IP du nÏud local, telle que découverte par le nÏud local

subver

Une sous-version montrant le type de logiciel exécuté sur ce nÏud (e.g., "/Satoshi:0.9.2.1/")+

BestHeight

La hauteur du bloc dans la blockchain de ce nÏud

(Voir GitHub pour un exemple du message réseau de la version.)

Le nÏud pair répond avec + verack + pour reconnaître et établir une connexion, et envoie
éventuellement son propre message de version sÕil souhaite amorcer une connexion et se connecter à
son tour comme un pair.

Comment un nouveau nÏud trouve des pairs ? La première méthode consiste à interroger un DNS en
utilisant un certain nombre de  graines DNS (DNS seeds), des serveurs DNS qui fournissent une liste
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dÕadresses IP de noeuds bitcoin. Certaines de ces graines DNS fournissent une liste statique des
adresses IP des noeuds bitcoin stable en écoute. DÕautres sont des implémentations personnalisées de
BIND (Berkeley Internet Name Daemon) qui renvoient un sous-ensemble aléatoire dÕadresses à partir
dÕune liste dÕadresses de nÏuds bitcoin recueillies par un robot ou dÕun nÏud bitcoin en activité
depuis longtemps. Le client Bitcoin Core contient les noms de cinq graines DNS différentes. Le fait que
les propriétaires et lÕimplémentation des différentes graines DNS soient très variés permet un haut
niveau de fiabilité dans le processus dÕamorçage initial. Dans le client Bitcoin Core, la possibilité
dÕutiliser les graines DNS est contrôlé par lÕoption dnsseed (défini à 1 par défaut, pour utiliser la graine
DNS).

Autrement, on doit donner à un nÏud dÕamorçage qui ne sait rien du réseau lÕadresse IP dÕau moins un
nÏud bitcoin, après quoi il peut établir des connexions par le biais de nouvelles présentations.
LÕargument de ligne de commande -seednode peut être utilisé pour se connecter à un nÏud juste pour
les présentations, lÕutilisant comme une graine. Après que le nÏud-graine initial soit utilisé pour
former des présentations, le client va se déconnecter et utiliser les pairs nouvellement découverts.
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Figure 4. La prise de contact initiale entre pairs

Une fois quÕune ou plusieurs connections ont été établies, le nouveau nÏud va envoyé à ses voisins un
message addr contenant sa propre adresse IP. Les voisins vont, en retour, faire suivre le message addr
à leurs voisins, assurant ainsi que le nÏud nouvellement connecté deviennent bien connu et mieux
connecté. En outre, le nÏud nouvellement connecté peut envoyé getaddr à ses voisins, leur demandant
de renvoyer une liste dÕadresses IP dÕautres pairs. De la sorte, un nÏud peut trouver des pairs avec qui
se connecter et annoncer son existence sur le réseau pour que dÕautres nÏud puisse le trouver. La
propagation et la découverte des adresses représente le protocole de découverte dÕadresse.
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Figure 5. La propagation et la découverte des adresses

Un nÏud doit se connecter à quelques pairs différents afin dÕétablir divers chemins au sein du réseau
bitcoin. Les chemins ne sont pas fiables Ð les noeuds vont et viennent Ð et par conséquent le nÏud doit
continuer à découvrir de nouveaux noeuds à mesure quÕil perd les anciennes connections de même
quÕil aidera les autres noeuds lorsquÕils sÕinitialisent. Une seule connection est nécessaire au
démarrage, parce que le premier nÏud peut proposer des présentations à ces noeuds pairs et ces
noeuds pairs peuvent proposer à nouveau des présentations. Il est aussi inutile et coûteux en terme de
ressources réseau de se connecter à plus dÕune poignée de noeuds. Après le démarrage, un nÏud va se
rappeler ses connections réussies les plus récentes, afin que sÕil redémarre il puisse rapidement
rétablir les connections avec son précédent réseau de pairs. Si aucun de ces anciens pairs ne répond à
sa requête de connection, le nÏud peut utiliser les noeuds graine pour démarrer de nouveau.
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Sur un nÏud exécutant le client Bitcoin Core, vous pouvez lister les connexions des pairs avec la
commande getpeerinfo :

$ bitcoin-cli getpeerinfo

[
Ê   {
Ê       "addr" : "85.213.199.39:8333",
Ê       "services" : "00000001",
Ê       "lastsend" : 1405634126,
Ê       "lastrecv" : 1405634127,
Ê       "bytessent" : 23487651,
Ê       "bytesrecv" : 138679099,
Ê       "conntime" : 1405021768,
Ê       "pingtime" : 0.00000000,
Ê       "version" : 70002,
Ê       "subver" : "/Satoshi:0.9.2.1/",
Ê       "inbound" : false,
Ê       "startingheight" : 310131,
Ê       "banscore" : 0,
Ê       "syncnode" : true
Ê   },
Ê   {
Ê       "addr" : "58.23.244.20:8333",
Ê       "services" : "00000001",
Ê       "lastsend" : 1405634127,
Ê       "lastrecv" : 1405634124,
Ê       "bytessent" : 4460918,
Ê       "bytesrecv" : 8903575,
Ê       "conntime" : 1405559628,
Ê       "pingtime" : 0.00000000,
Ê       "version" : 70001,
Ê       "subver" : "/Satoshi:0.8.6/",
Ê       "inbound" : false,
Ê       "startingheight" : 311074,
Ê       "banscore" : 0,
Ê       "syncnode" : false
Ê   }
]

Pour remplacer la gestion automatique des pairs et spécifier une liste dÕadresses IP, les utilisateurs
peuvent fournir lÕoption -connect=<IPAddress> et spécifier une ou plusieurs adresses IP. Si cette option
est utilisée, le nÏud se connectera uniquement aux adresses IP sélectionnées, au lieu de découvrir et
de maintenir les connexions pairs automatiquement.
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SÕil nÕy a pas de trafic sur une connexion, les nÏuds vont envoyer régulièrement un message afin de la
maintenir. Si un nÏud nÕa pas communiqué sur une connexion pendant plus de 90 minutes, on
présume quÕelle est interrompue et un nouveau pair sera recherché. Ainsi, le réseau sÕajuste
dynamiquement aux nÏuds éphémères et aux problèmes de réseau, et peut organiquement grandir et
rétrécir comme bon lui semble sans aucun contrôle central.

Les noeuds complets
Les nÏuds complets sont des noeuds qui maintiennent une blockchain complète avec toutes les
transactions. De façon plus fidèle, on devrait probablement les appeler "noeuds à blockchain
complète". Dans les premières années de bitcoin, tous les nÏuds étaient des nÏuds complets et
actuellement le client Bitcoin Core est un nÏud à blockchain complète. Au cours des deux dernières
années, cependant, de nouvelles formes de clients bitcoin ont été introduites, lesquels ne maintient pas
de blockchain complète, mais se présentent comme des clients légers. Nous allons les examiner plus en
détail dans la section suivante.

Les nÏuds à blockchain complète entretiennent une copie complète et à jour de la blockchain bitcoin
avec toutes les transactions, quÕils construisent et vérifient de façon indépendante, en commençant par
le premier bloc (bloc de genèse) et ce jusquÕà au dernier bloc connu sur le réseau. Un nÏud à
blockchain complète peut indépendamment et avec autorité vérifier toute transaction sans avoir
recours à quiconque ni dépendre dÕun autre nÏud ou dÕune source dÕinformation. Le nÏud à
blockchain complète sÕappui sur le réseau pour recevoir des mises à jour sur les nouveaux blocs de
transactions, lesquels sont ensuite vérifiés et intégrés à sa copie locale de la blockchain.

Exécuter un nÏud à blockchain complète vous procure lÕexpérience bitcoin la plus pure : une
vérification indépendante de toutes les transactions sans avoir besoin de sÕappuyer sur, ou faire
confiance à, nÕimporte quels autres systèmes. Il est facile de dire si vous utilisez un nÏud complet car il
nécessite plus de 20 giga-octets de stockage persistant (espace disque) afin de stocker la blockchain
dans son intégralité. Si vous avez besoin de beaucoup dÕespace disque et quÕil vous faut deux à trois
jours pour vous synchroniser au réseau, vous utilisez un nÏud complet. Ceci est le prix à payer pour
une complète indépendance et une entière liberté vis-à-vis dÕune autorité centrale.

Il existe quelques implémentations alternatives aux clients bitcoin à blockchain complète, créées avec
différents languages de programmation et architectures logicielles. Cependant, lÕimplémentation la
plus commune est le client de référence Bitcoin Core, également connu sous le nom de client Satoshi.
Plus de 90% des noeuds sur le réseau bitcoin exécutent diverses versions de Bitcoin Core. Il est
identifié comme "Satoshi" dans la sous-version envoyée dans le message version et affiché par la
commande getpeerinfo comme vu précédemment; par exemple, /Satoshi:0.8.6/.

Echanger l'"Inventaire"
La première chose quÕun noeud complet va faire une fois connecté à ses pairs est dÕessayer de
construire une blockchain complète. Si cÕest un tout nouveau nÏud et quÕil nÕa pas de blockchain, il ne
connaît quÕun bloc, le bloc de genèse, qui est constamment intégré dans le logiciel client. Commençant
par le bloc #0 (le bloc de la genèse), le nouveau nÏud devra télécharger des centaines de milliers de
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blocs pour se synchroniser avec le réseau et rétablir une blockchain complète.

Le processus de synchronisation de la blockchain commence avec le message version, parce quÕil
contient BestHeight, la hauteur actuelle de la blockchain dÕun nÏud (nombre de blocs). Un noeud
voyant les messages version de ses pairs, saura combien de blocs chacun possède, et sera en mesure de
comparer cela au nombre de blocs quÕil a dans sa propre blockchain. Les nÏuds pairés échangeront un
message getblocks qui contient le hash (empreinte digitale) du bloc au sommet de leur blockchain
locale. Un des pairs sera en mesure dÕidentifier le hash reçu comme appartenant à un bloc qui nÕest pas
au sommet, mais qui appartient plutôt à un bloc plus ancien, pour en déduire que sa propre
blockchain locale est plus longue que celle de son pair.

Le pair qui a la plus longue blockchain a plus de blocs que lÕautre noeud et est en mesure dÕidentifier
quels blocs les autres noeuds ont besoin de "rattraper". Il identifiera les 500 premiers blocs à partager
et transmettra leurs hash en utilisant un message  inv (inventaire). Le nÏud nÕayant pas ces blocs
pourra donc les récupérer, ceci en émettant une série de messages getdata demandant les données
complètes du bloc et en identifiant les blocs demandés avec les hash obtenus par le message inv.

Supposons, par exemple, quÕun noeud ne possède que le bloc de genèse. Il recevra alors un message
inv de ses pairs contenant les hash des 500 blocs suivants dans la chaîne. Il commencera alors à
demander des blocs à tout ses pairs connectés, répartissant la charge et assurant quÕil ne submerge
aucun pair de ses sollicitations. Le nÏud garde la trace du nombre de blocs Çen transitÈ par connexion
de pair, cÕest-à-dire les blocs quÕil a demandé mais pas reçus, en vérifiant que lÕon ne dépasse pas une
limite (MAX_BLOCKS_IN_TRANSIT_PER_PEER). De cette façon, sÕil a besoin de beaucoup de blocs, il ne
demandera que les nouveaux à mesure que les requêtes précédentes soient satisfaites, permettant aux
pairs de contrôler le rythme des mises à jour et de ne pas surcharger le réseau. Ë mesure que chaque
bloc est reçu, il est ajouté à la blockchain, comme nous allons le voir dans [blockchain]. Ë mesure que
la blockchain locale se construit, plus de blocs sont demandés et reçus, et le processus continue jusquÕà
ce que le noeud rattrape le reste du réseau.

Ce processus de comparaison de la blockchain locale avec les pairs et de récupération de tous les blocs
manquants arrive chaque fois quÕun noeud passe hors ligne durant un certain laps de temps. QuÕun
noeud ait été déconnecté pendant quelques minutes et auquel il manque quelques blocs, ou pendant
un mois et a besoin de quelques milliers de blocs, il commence par lÕenvoi de getblocks, obtient une
réponse inv et commence à télécharger les blocs manquants. Noeud synchronisant la blockchain en
récupérant les blocs dÕun pair représente le protocole dÕinventaire et de propagation de bloc.

Les noeuds de Vérification de Paiement Simplifié (SPV)
Tous les nÏuds nÕont pas la capacité de stocker la blockchain dans son intégralité. Beaucoup de clients
bitcoin sont conçus pour fonctionner sur des appareils à lÕespace - et à la puissance - limités, tels que
smartphones, tablettes ou systèmes embarqués. Pour ces appareils, une méthode de vérification de
paiement simplifiée (SPV) est utilisé pour leur permettre de fonctionner sans conserver lÕentière
blockchain. Ces types de clients sont appelés clients SPV ou clients légers. Ë mesure que lÕadoption du
bitcoin croît, le nÏud SPV devient la forme la plus commune de noeud bitcoin, en particulier pour les
portefeuilles bitcoin.
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Les nÏuds SPV téléchargent uniquement les en-têtes de bloc, ignorant les transactions incluses dans
chaque bloc. La chaîne de blocs obtenue, sans transactions, est 1000 fois plus petite que la blockchain
complète. Les nÏuds SPV ne peuvent pas construire une image complète de tous les UTXOs prêts à être
dépensé parce quÕils ne sont pas informés de toutes les transactions sur le réseau. Les nÏuds SPV
vérifient les transactions en utilisant une méthodologie légèrement différente qui repose sur les pairs
pour leurs fournir des vues partielles de parties pertinentes de la blockchain, à la demande.
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Figure 6. Noeud synchronisant la blockchain en récupérant les blocs dÕun pair

Par analogie, un noeud complet est comme un touriste dans une ville étrange, équipé dÕune carte
détaillée de chaque rue et de chaque adresse. En comparaison, un noeud SPV est comme un touriste
dans une ville étrange demandant à chaque intersection son chemin à des étrangers pris au hasard,
nÕayant connaissance que dÕune avenue principale. Bien que les deux touristes soient capables de
vérifier lÕexistence dÕune rue en la visitant, le touriste sans carte ne connait aucune des allées latérales,
et ne sait pas quÕil existe dÕautres rues. Situé devant le 23 Church Street, le touriste sans carte ne peut
pas savoir sÕil y a une douzaine dÕautres "23 Church Street" dans la ville et sÕil sÕagit de la bonne. La
meilleure chose à faire pour le touriste sans carte est de demander à suffisamment de gens et espérer
que certains dÕentre eux nÕessaient pas de lÕagresser.

La vérification de paiement simplifié vérifie les transactions par référence à leur profondeur dans la
blockchain au lieu de leur hauteur. Alors quÕun noeud à blockchain complète construira une chaîne
entièrement vérifiée composée de milliers de blocs et transactions, descendant dans la blockchain
(remontant dans le temps) jusquÕà atteindre le bloc de genèse, un noeud SPV vérifiera la chaîne de tous
les blocs (mais pas de toutes les transactions) et liera cette chaîne à la transaction qui importe.

Par exemple, lorsque lÕon examine une transaction dans le bloc 300 000, un noeud complet relie
lÕensemble de ces 300 000 blocs jusquÕau bloc de genèse et construit une base de données complète
dÕUTXO, établissant la validité dÕune transaction en confirmant que ces UTXO soient effectivement non
dépensés. Un noeud SPV est incapable de confirmer si un UTXO demeure non dépensé. Au lieu de cela,
le noeud SPV va établir un lien entre la transaction et le bloc qui la contient, utilisant un chemin de
merkle (see [merkle_trees]). Ensuite, le noeud SPV attends de voir les six blocs 300 001 à 300 006
empilés au-dessus du bloc contenant la transaction et vérifie cela en établissant sa profondeur entre
les blocs 300 006 à 300 001. Le fait que dÕautres nÏuds sur le réseau aient accepté le bloc 300 000 puis
aient fait le travail nécessaire pour produire six autres blocs par-dessus celui-ci est la preuve, par
procuration, que la transaction nÕétait pas une double-dépense.

Un nÏud SPV ne peut pas être persuadé quÕune transaction existe dans un bloc lorsque, de fait, elle
nÕexiste pas. Le nÏud SPV établit lÕexistence dÕune transaction dans un bloc en demandant une preuve
de type chemin de Merkle et en validant la preuve de travail dans la chaîne de blocs. Toutefois,
lÕexistence dÕune transaction peut être ÇcachéÈ dÕun noeud SPV. Un nÏud de SPV peut certainement
prouver quÕune transaction existe, mais ne peut pas vérifier quÕune transaction, telle quÕune double-
dépense du même UTXO, nÕexiste pas, car il ne dispose pas dÕun registre de toutes les transactions.
Cette vulnérabilité peut être utilisé dans une attaque par déni de service ou pour une attaque double-
dépense contre un nÏud SPV. Pour se défendre contre cela, un noeud SPV doit se connecter au hasard
à plusieurs nÏuds, pour augmenter la probabilité quÕil est en contact avec au moins un noeud
honnête. Ce besoin de se connecter au hasard signifie que les nÏuds SPV sont également vulnérables
aux attaques de partitionnement réseau ou aux attaques Sybil, où ils sont reliées à de faux nÏuds ou
de faux réseaux et nÕont pas accès aux nÏuds honnêtes ou au réseau bitcoin réel.

Pour la plupart des applications pratiques, les nÏuds SPV suffisamment connectés sont assez sûr,
trouvant le juste équilibre entre besoins en ressources, aspect pratique et sécurité. Pour une sécurité
infaillible, cependant, rien ne vaut lÕexécution dÕun noeud à blockchain complète.
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TIP

Un nÏud à blockchain complète contrôle une transaction en passant en revue la totalité
de la chaîne qui comprend plusieurs milliers de blocs sous elle afin de garantir que le
UTXO nÕest pas dépensé, alors quÕun nÏud SPV vérifie à quelle profondeur le bloc est
enfoui sous une poignée de blocs.

Pour obtenir les en-têtes de bloc, les nÏuds SPV utilisent un message getheaders au lieu de getblocks.
Le pair qui répondra enverra jusquÕà 2000 en-têtes de bloc en utilisant un seul message headers. Le
processus est par ailleurs le même que celui utilisé par un noeud complet pour extraire des blocs
complets. Les nÏuds SPV définissent également un filtre sur la connexion à leurs pairs, pour filtrer le
flux de futures blocs et  transactions envoyés par les pairs. Toutes les transactions dÕintérêt sont
récupérés en utilisant une requête getdata. En réponse, le pair génère un message tx contenant les
transactions. Noeud SPV synchronisant les en-têtes de bloc représente la synchronisation des en-têtes
de bloc.
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Figure 7. Noeud SPV synchronisant les en-têtes de bloc

Parce que les nÏuds SPV ont besoin de récupérer des transactions spécifiques afin de les vérifier de
manière sélective, ils engendrent également un risque concernant la vie privée. Contrairement aux
noeuds à blockchain complète, qui collectent toutes les transactions au sein de chaque bloc, les
demandes du nÏud SPV pour obtenir des données spécifiques peuvent révéler, par inadvertance, les
adresses contenues dans leur portefeuille. Par exemple, un tiers surveillant un réseau pourrait garder
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une trace de toutes les transactions demandées par un portefeuille sur un nÏud SPV et les utiliser pour
associer les adresses bitcoin avec lÕutilisateur de ce portefeuille, détruisant la vie privée de lÕutilisateur.

Peu de temps après lÕintroduction de nÏuds SPV/légers, les développeurs de Bitcoin ont ajouté une
fonctionnalité appelée bloom filters pour faire face à ce risque de concernant la vie privée. Les filtres
de Bloom permettent aux nÏuds SPV de recevoir un sous-ensemble des transactions sans révéler
précisément quelles sont les adresses qui les intéressent, à travers un mécanisme de filtrage qui
sÕappui sur des probabilités plutôt que sur des modèles fixes.

Les filtres de Bloom
Un filtre de bloom est un filtre de recherche probabiliste, un moyen pour décrire un pattern souhaité
sans le préciser exactement. Les filtres de bloom offrent un moyen efficace pour exprimer un pattern
de recherche tout en protégeant la vie privée. Ils sont utilisés par les nÏuds SPV pour demander à
leurs pairs des transactions correspondant à un pattern spécifique, sans révéler exactement quÕelles
adresses ils recherchent.

Dans notre analogie précédente, un touriste sans carte demandait à connaître le chemin vers une
adresse spécifique, "23 Church St." Si elle demande à des étrangers le chemin vers cette rue, elle révèle
par inadvertance sa destination. Un filtre de bloom est comme demander, "Y a t-il dans ce quartier des
rues dont le nom se termine par R-C-H ?" Une telle question en dévoile un peu moins sur la destination
souhaitée que de demander "23 Church St." En utilisant cette technique, un touriste pourrait préciser
lÕadresse souhaitée avec plus de détails comme "se terminant par U-R-C-H" ou avec moins de détails
comme "se terminant par H." En faisant varier la précision de la recherche, le touriste révèle plus ou
moins dÕinformations, avec pour contre-partie lÕobtention de résultats plus ou moins précis. Si elle
demande un pattern moins précis, elle reçoit beaucoup plus dÕadresses possibles et conserve sa vie
privée, mais la plupart des résultats ne seront pas pertinents. Si elle demande un pattern très précis,
elle obtient moins de résultats mais perd sa vie privée.

Les filtres de Bloom remplissent cette fonction en permettant à un noeud SPV de spécifier un pattern
de recherche pour trouver des transactions, lequel peut être ajusté entre précision et vie privée. Un
filtre de bloom plus précis produira des résultats juste, au détriment de divulguer les adresses utilisées
dans le portefeuille de lÕutilisateur. Un filtre de bloom moins spécifique va produire plus de données
concernant plus de transactions, dont beaucoup inutile pour le noeud, mais permettra au noeud de
maintenir une meilleure vie privée.

Un nÏud SPV va initialiser un filtre de bloom à Ç vide È et dans cet état le filtre de bloom ne
correspondra à aucun pattern. Le nÏud SPV va ensuite faire une liste de toutes les adresses contenues
dans son portefeuille et créer un pattern de recherche correspondant à la sortie de transaction
(transaction output) de chaque adresse. Habituellement, le pattern de recherche est un script pay-to-
public-key-hash qui est le script de verrouillage attendu qui sera présent dans toute transaction payant
le public-key-hash (adresse). Autrement, si le nÏud SPV traque le solde dÕune adresse P2SH, le pattern
de recherche sera un script pay-to-script-hash. Le noeud SPV ajoute ensuite chacun des patterns de
recherche au filtre de bloom, de sorte que le filtre puisse reconnaître le pattern de recherche sÕil est
présent dans une transaction. Enfin, le filtre de bloom est envoyé aux pairs et les pairs utilise cela pour
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trouver les transactions et les transmettre au noeud SPV.

Les filtres de Bloom sont implémentés comme un tableau de taille variable de N chiffres binaires (un
champ de bits) et un nombre variable M de fonctions de hachage. Les fonctions de hachage sont
conçus pour produire toujours un signal de sortie qui est compris entre 1 et N, correspondant au
tableau de chiffres binaires. Les fonctions de hachage sont générés de façon déterministe, de sorte que
nÕimporte quel noeud mettant en Ïuvre un filtre de bloom utilisera toujours les mêmes fonctions de
hachage et obtiendra le même résultat pour une entrée spécifique. En choisissant différentes longueur
(N) de filtres de bloom et un nombre différent (M) de fonctions de hachage, le filtre de bloom peut être
ajusté, faisant varier le niveau de précision et donc la vie privée.

Dans Un exemple de filtre bloom simpliste, avec un champ de 16 bits et trois fonctions de hachage,
nous utilisons un très petit tableau de 16 bits et un ensemble de trois fonctions de hachage afin de
démontrer comment les filtres de bloom fonctionnent.

Figure 8. Un exemple de filtre bloom simpliste, avec un champ de 16 bits et trois fonctions de hachage

Le filtre de bloom est initialisée afin que les bits du tableau soient tous à zéro. Pour ajouter un pattern
au filtre de bloom, le pattern est haché tour à tour par chaque fonction de hachage. Appliquer la
première fonction de hachage aux entrées résulte en un nombre compris entre 1 et N. Le bit
correspondant dans le tableau (indexé de 1 à N) est trouvé et mis à 1, enregistrant ainsi la sortie de la
fonction de hachage. Ensuite, la fonction de hachage suivante est utilisée pour définir un autre bit et
ainsi de suite. Une fois que toutes les fonctions de hachage M ont été appliquées, le pattern de
recherche sera "enregistré" dans le filtre de bloom en tant que M bits qui ont été modifiés de 0 à 1.

Ajout dÕun pattern ÇAÈ à notre filtre de bloom simple est un exemple dÕajout dÕun pattern ÇAÈ au filtre
de bloom simple représenté dans Un exemple de filtre bloom simpliste, avec un champ de 16 bits et
trois fonctions de hachage.

Ajouter un second pattern est aussi simple que de répéter ce processus. Le pattern est haché par
chaque fonction de hachage tour à tour et le résultat est enregistré en mettant les bits à 1. A noter quÕà
mesure quÕun filtre de bloom est rempli avec dÕautres patterns, le résultat dÕune fonction de hachage
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peut coïncider avec un bit qui est déjà fixé à 1, auquel cas le bit nÕest pas modifié. En essence, à mesure
que plusieurs patterns enregistre sur des bits déjà fixé à 1, le filtre de bloom commence à devenir
saturé et la précision du filtre diminue. CÕest la raison pour laquelle le filtre est une structure de
données probabilistes Ð il devient moins précis à mesure que lÕon ajoute des patterns. La précision
dépend du nombre de patterns ajoutés versus la taille du tableau de bits (N) et du nombre de fonctions
de hachage (M). Un tableau de bits plus large avec plus de fonctions de hachage peut enregistrer plus
de patterns avec une précision plus élevée. Un tableau de bits plus petit ou moins de fonctions de
hachage enregistreront moins de patterns et le résultat perdra en précision.

Figure 9. Ajout dÕun pattern ÇAÈ à notre filtre de bloom simple

Ajout dÕun second pattern ÇBÈ à notre filtre de bloom simple est un exemple dÕajout dÕun deuxième
pattern "B" au filtre de bloom simple.
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Figure 10. Ajout dÕun second pattern ÇBÈ à notre filtre de bloom simple

Pour tester si un pattern fait partie dÕun filtre de bloom, le pattern est haché par chaque fonction de
hachage et le pattern de bits résultant est confronté au tableau de bits. Si tous les bits indexés par les
fonctions de hachage sont mis à 1, alors le motif est probablement enregistré dans le filtre de bloom.
Parce que les bits peuvent être fixé à cause du chevauchement de plusieurs pattern, la réponse nÕest
pas absolue, mais est plutôt probabiliste. En termes simples, le résultat positif dÕun filtre de bloom est
"Peut-être, oui."

Test lÕexistence du pattern "X" dans le filtre de bloom. Le résultat est une correspondance positive
probabiliste, ce qui signifie ÇPeut-être." est un exemple consistant à tester lÕexistence dÕun pattern "X"
dans notre simple filtre de bloom. Les bits correspondants sont fixés à 1, de sorte que le motif
correspond probablement.
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Figure 11. Test lÕexistence du pattern "X" dans le filtre de bloom. Le résultat est une correspondance
positive probabiliste, ce qui signifie ÇPeut-être."

Au contraire, si un modèle est testé sur un filtre de bloom et que tous les bits sont à 0, cela prouve que
le modèle nÕa pas été enregistrée dans le filtre de bloom. Un résultat négatif nÕest pas une probabilité,
cÕest une certitude. En termes simples, un match négatif sur un filtre de bloom est un "Certainement
pas!"

Test lÕexistence du pattern "Y" dans le filtre de bloom. Le résultat est un match négatif définitif, ce qui
signifie "Certainement pas!" est un exemple consistant à tester lÕexistence du pattern "Y" sur le filtre de
bloom. Un des bits correspondant est fixé à 0, donc le motif ne correspond certainement pas.
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Figure 12. Test lÕexistence du pattern "Y" dans le filtre de bloom. Le résultat est un match négatif définitif,
ce qui signifie "Certainement pas!"

LÕimplémentation bitcoin des filtres de bloom est décrite dans le Bitcoin Improvement Proposal 37
(BIP0037). Voir [appdxbitcoinimpproposals] ou visite GitHub.

Filtres de bloom et mises à jour de lÕinventaire
Les filtres de bloom sont utilisés pour filtrer les transactions (et les blocs les contenant) quÕun noeud
SPV reçoit de ses pairs. Les nÏuds SPV vont créer un filtre qui correspond uniquement aux adresses
détenues dans le portefeuille du noeud SPV. Le nÏud SPV enverra alors un message filterload au pair,
contenant le filtre de bloom à utiliser sur la connexion. Après quÕun filtre soit établi, le pair testera les
sorties de chaque transaction avec le filtre de bloom. Seules les transactions qui correspondent au
filtre sont envoyés au noeud.

En réponse au message getdata dÕun noeud, les pairs enverront un message merkleblock qui ne
contient que les en-têtes de bloc pour les blocs correspondant au filtre et un chemin de Merkle (voir
[merkle_trees]) pour chaque transaction correspondante. Le pair enverra également des messages tx
contenant les transactions qui correspondent au filtre.

Le nÏud fixant le filtre de bloom peut de façon interactive ajouter des motifs au filtre en envoyant un
message filteradd. Pour effacer le filtre de bloom, le nÏud peut envoyer un message filterclear. Parce
quÕil nÕest pas possible de supprimer un pattern dÕun filtre de bloom, un nÏud doit remettre à zéro et
renvoyer un nouveau filtre de bloom si un pattern nÕest plus désiré.
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Les pools de transaction
Presque chaque noeud sur le réseau bitcoin maintient une liste temporaire des transactions non
confirmées appelée memory pool, mempool ou transaction pool. Les nÏuds utilisent cette pool pour
garder une trace des transactions connues du réseau, mais non encore incluses dans la blockchain. Par
exemple, un nÏud qui détient le portefeuille dÕun utilisateur utilisera la pool de transaction pour
suivre les paiements entrants vers le portefeuille qui ont été reçus sur le réseau mais non encore
confirmés.

A mesure que les transactions soient reçues et vérifiées, elles sont ajoutées à la pool de transaction et
relayées vers les noeuds voisins pour se propager sur le réseau.

Certaines implémentations de nÏuds maintiennent également une pool séparée pour les transactions
orphelines. Si les entrées dÕune transaction se réfèrent à une transaction qui nÕest pas encore connue,
comme un parent manquant, la transaction orpheline sera stockée temporairement dans la pool des
orphelines jusquÕà ce que la transaction parente arrive.

LorsquÕune transaction est ajoutée à la pool de transaction, la pool des orphelines est vérifiée pour
toutes les orphelines qui référencent les sorties de cette transaction (ses enfants). Toute orpheline
correspondante est alors validée. Si elle est valide, elle est retirée de la pool des orphelines et ajoutée à
la pool de transaction, complétant la chaîne qui a commencé avec la transaction parente. Ë la lumière
de la transaction nouvellement ajoutée, qui nÕest plus une orpheline, le processus est répété de
manière récursive à la recherche dÕautres descendants, jusquÕà ce quÕil nÕy en ait plus. Grâce à ce
processus, lÕarrivée dÕune transaction parente déclenche une cascade de reconstruction de toute une
chaîne de transactions interdépendantes en réunissant les orphelines à leurs parents jusquÕau bout de
la chaîne.

Tant la pool de transactions que la pool des orphelines (lorsque mise en place) est stockée dans la
mémoire locale et nÕest pas enregistrée sur un stockage persistant; plutôt, elles sont peuplées
dynamiquement par les messages de réseau entrants. Quand un noeud commence, les deux pools sont
vides et sont progressivement remplies avec de nouvelles transactions reçues sur le réseau.

Certaines implémentations du client bitcoin maintiennent également une base de données dÕUTXO ou
pool dÕUTXO, qui représente lÕensemble de toutes les sorties non dépensées sur la blockchain. Bien que
le terme "pool dÕUTXO" semble similaire à la pool de transaction, elle représente un ensemble différent
de données. Contrairement aux pools de transaction et dÕorpheline, la pool dÕUTXO nÕest pas initialisée
à vide, mais contient au lieu de ça des millions dÕentrées de sorties de transaction non dépensées, dont
certaines remontent à 2009. La pool dÕUTXO peut résider dans la mémoire locale ou en tant que table
de base de données indexée sur un stockage persistant .

Alors que les pools de transaction et dÕorpheline représentent le point de vue local dÕun seul nÏud et
peuvent varier considérablement dÕun nÏud à lÕautre en fonction de quand le noeud a été démarré ou
redémarré, la pool dÕUTXO représente le consensus émergent du réseau et varie donc peu dÕun noeud à
lÕautre. En outre, les pool de transaction et dÕorpheline ne contiennent que des transactions non
confirmées, tandis que la pool dÕUTXO ne contient que des sorties confirmées.
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Messages dÕalerte
Les messages dÕalerte sont une fonction rarement utilisée, mais sont néanmoins implémentés dans la
plupart des nÏuds. Les messages dÕalerte sont le "système de diffusion dÕurgence" de bitcoin, un
moyen par lequel les développeurs principaux de bitcoin peuvent envoyer un message texte dÕurgence
à tous les nÏuds bitcoin. Cette fonctionnalité est implémentée pour permettre à lÕéquipe de
développement de notifier tous les utilisateurs de bitcoin dÕun grave problème dans le réseau, tel un
bug critique qui nécessite une action de lÕutilisateur. Le système dÕalerte nÕa été utilisé quÕune poignée
de fois, notamment au début de 2013 lorsquÕun bug critique de base de données causa un fork
multibloc dans la blockchain bitcoin.

Les messages dÕalerte sont propagés par le message alerte. Le message dÕalerte contient plusieurs
champs, incluant :

ID

Un identifiant dÕalerte afin que les alertes en double puissent être détectées

Expiration

Une durée après laquelle lÕalerte expire

RelayUntil

Un temps au bout duquel lÕalerte ne doit pas être relayée

MinVer, MaxVer

LÕétendue des versions du protocole bitcoin auquelle sÕapplique cette alerte

subVer

La version du logiciel client à laquelle sÕapplique cette alerte

Priority

Un niveau de priorité pour lÕalerte, actuellement inutilisé

Les alertes sont signés de manière cryptographique par une clé publique. La clé privée correspondante
est détenue par quelques membres choisis de lÕéquipe de développement bitcoin. La signature
numérique garantit que de fausses alertes ne soient propagées sur le réseau.

Chaque nÏud recevant ce message dÕalerte va le vérifier, contrôler son expiration, et le propager à
tous ses pairs, assurant ainsi la propagation rapide à travers lÕensemble du réseau. En plus de propager
lÕalerte, les noeuds peuvent mettre en oeuvre une fonction dÕinterface utilisateur pour présenter
lÕalerte à lÕutilisateur.

Dans le client Bitcoin Core, lÕalerte est configuré avec lÕoption en ligne de commande -alertnotify, qui
spécifie une commande à exécuter lorsquÕune alerte est reçue. Le message dÕalerte est passé en
paramètre à la commande alertnotify. Le plus souvent, la commande alertnotify est réglée pour
générer un message électronique à lÕadministrateur du nÏud, contenant le message dÕalerte. LÕalerte
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est également affiché comme une boîte de dialogue pop-up dans lÕinterface graphique utilisateur
(bitcoin-Qt) si elle est en marche.

DÕautres implémentations du protocole bitcoin peuvent gérer lÕalerte de différentes manières. De
nombreux systèmes de minage à hardware intégré ne mettent pas en Ïuvre la fonction de message
dÕalerte parce quÕils nÕont aucune interface utilisateur. Il est fortement recommandé que les mineurs
exécutant ces systèmes de minage sÕabonnent à des alertes via un administrateur de pool ou en
exécutant un noeud léger seulement à des fins dÕalerte.
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La Blockchain

Introduction
The blockchain data structure is an ordered, back-linked list of blocks of transactions. The blockchain
can be stored as a flat file, or in a simple database. The Bitcoin Core client stores the blockchain
metadata using GoogleÕs LevelDB database. Blocks are linked "back," each referring to the previous
block in the chain. The blockchain is often visualized as a vertical stack, with blocks layered on top of
each other and the first block serving as the foundation of the stack. The visualization of blocks stacked
on top of each other results in the use of terms such as "height" to refer to the distance from the first
block, and "top" or "tip" to refer to the most recently added block.

Each block within the blockchain is identified by a hash, generated using the SHA256 cryptographic
hash algorithm on the header of the block. Each block also references a previous block, known as the
parent block, through the "previous block hash" field in the block header. In other words, each block
contains the hash of its parent inside its own header. The sequence of hashes linking each block to its
parent creates a chain going back all the way to the first block ever created, known as the genesis
block.

Although a block has just one parent, it can temporarily have multiple children. Each of the children
refers to the same block as its parent and contains the same (parent) hash in the "previous block hash"
field. Multiple children arise during a blockchain "fork," a temporary situation that occurs when
different blocks are discovered almost simultaneously by different miners (see [forks]). Eventually,
only one child block becomes part of the blockchain and the "fork" is resolved. Even though a block
may have more than one child, each block can have only one parent. This is because a block has one
single "previous block hash" field referencing its single parent.

The "previous block hash" field is inside the block header and thereby affects the current blockÕs hash.
The childÕs own identity changes if the parentÕs identity changes. When the parent is modified in any
way, the parentÕs hash changes. The parentÕs changed hash necessitates a change in the "previous block
hash" pointer of the child. This in turn causes the childÕs hash to change, which requires a change in
the pointer of the grandchild, which in turn changes the grandchild, and so on. This cascade effect
ensures that once a block has many generations following it, it cannot be changed without forcing a
recalculation of all subsequent blocks. Because such a recalculation would require enormous
computation, the existence of a long chain of blocks makes the blockchainÕs deep history immutable,
which is a key feature of bitcoinÕs security.

One way to think about the blockchain is like layers in a geological formation, or glacier core sample.
The surface layers might change with the seasons, or even be blown away before they have time to
settle. But once you go a few inches deep, geological layers become more and more stable. By the time
you look a few hundred feet down, you are looking at a snapshot of the past that has remained
undisturbed for millions of years. In the blockchain, the most recent few blocks might be revised if
there is a chain recalculation due to a fork. The top six blocks are like a few inches of topsoil. But once
you go more deeply into the blockchain, beyond six blocks, blocks are less and less likely to change.
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After 100 blocks back there is so much stability that the coinbase transactionÑthe transaction
containing newly mined bitcoinsÑcan be spent. A few thousand blocks back (a month) and the
blockchain is settled history, for all practical purposes. While the protocol always allows a chain to be
undone by a longer chain and while the possibility of any block being reversed always exists, the
probability of such an event decreases as time passes until it becomes infinitesimal.

Structure dÕun bloc
A block is a container data structure that aggregates transactions for inclusion in the public ledger, the
blockchain. The block is made of a header, containing metadata, followed by a long list of transactions
that make up the bulk of its size. The block header is 80 bytes, whereas the average transaction is at
least 250 bytes and the average block contains more than 500 transactions. A complete block, with all
transactions, is therefore 1,000 times larger than the block header. La structure dÕun bloc describes the
structure of a block.

Table 1. La structure dÕun bloc

Taille Champ Description

4 octets Taille de bloc La taille du bloc, en octets,
suivant ce champ

80 octets Entête de bloc Plusieurs champs forment
lÕentête de bloc

1-9 bytes (VarInt) Transaction Counter How many transactions follow

Variable Transactions Les transactions enregistrées
dans ce bloc

Entête de bloc
The block header consists of three sets of block metadata. First, there is a reference to a previous block
hash, which connects this block to the previous block in the blockchain. The second set of metadata,
namely the difficulty, timestamp, and nonce, relate to the mining competition, as detailed in [ch8]. The
third piece of metadata is the merkle tree root, a data structure used to efficiently summarize all the
transactions in the block. La structure de lÕentête de bloc describes the structure of a block header.

Table 2. La structure de lÕentête de bloc

Taille Champ Description

4 octets Version Un numéro de version pour
suivre les mises à jour
logicielles/de protocole

32 octets Hash du bloc précédent Une référence au hachage du
précédent (parent) bloc dans la
chaîne
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Taille Champ Description

32 octets Merkle Root Un hachage de la racine de
lÕarbre de Merkle des
transactions de ce bloc

4 octets Timestamp Le temps de création
approximative de ce bloc
(secondes depuis le début de
lÕEre Unix (Unix Epoch) )

4 octets Le niveau de difficulté Le niveau de difficulté de
lÕalgorithme proof-of-work pour
ce bloc

4 octets Nonce Un compteur utilisé pour
lÕalgorithme proof-of-work

The nonce, difficulty target, and timestamp are used in the mining process and will be discussed in
more detail in [ch8].

Identifiants de Bloc: Hashage dÕEntête de Bloc et
Hauteur de Bloc
The primary identifier of a block is its cryptographic hash, a digital fingerprint, made by hashing the
block header twice through the SHA256 algorithm. The resulting 32-byte hash is called the <em>block
hash</em> but is more accurately the <em>block header hash</em>, <phrase role="keep-
together">because only the block header is used to compute it. For example,</phrase>
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f is the block hash of the first
bitcoin block ever created. The block hash identifies a block uniquely and unambiguously and can be
independently derived by any node by simply hashing the block header.

Note that the block hash is not actually included inside the blockÕs data structure, neither when the
block is transmitted on the network, nor when it is stored on a nodeÕs persistence storage as part of the
blockchain. Instead, the blockÕs hash is computed by each node as the block is received from the
network. The block hash might be stored in a separate database table as part of the blockÕs metadata,
to facilitate indexing and faster retrieval of blocks from disk.

A second way to identify a block is by its position in the blockchain, called the <phrase role="keep-
together"><emphasis>block height</emphasis>. The first block ever created is at block height 0 (zero)
and is the</phrase> <phrase role="keep-together">same block that was previously referenced by the
following block hash</phrase>
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f. A block can thus be
identified two ways: by referencing the block hash or by referencing the block height. Each subsequent
block added "on top" of that first block is one position "higher" in the blockchain, like boxes stacked
one on top of the other. The block height on January 1, 2014, was approximately 278,000, meaning
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there were 278,000 blocks stacked on top of the first block created in January 2009.

Unlike the block hash, the block height is not a unique identifier. Although a single block will always
have a specific and invariant block height, the reverse is not trueÑthe block height does not always
identify a single block. Two or more blocks might have the same block height, competing for the same
position in the blockchain. This scenario is discussed in detail in the section [forks]. The block height is
also not a part of the blockÕs data structure; it is not stored within the block. Each node dynamically
identifies a blockÕs position (height) in the blockchain when it is received from the bitcoin network.
The block height might also be stored as metadata in an indexed database table for faster retrieval.

TIP

A blockÕs block hash always identifies a single block uniquely. A block also always has a
specific block height. However, it is not always the case that a specific block height can
identify a single block. Rather, two or more blocks might compete for a single position in
the blockchain.

Le Bloc de Genèse
The first block in the blockchain is called the genesis block and was created in 2009. It is the common
ancestor of all the blocks in the blockchain, meaning that if you start at any block and follow the chain
backward in time, you will eventually arrive at the genesis block.

Every node always starts with a blockchain of at least one block because the genesis block is statically
encoded within the bitcoin client software, such that it cannot be altered. Every node always "knows"
the genesis blockÕs hash and structure, the fixed time it was created, and even the single transaction
within. Thus, every node has the starting point for the blockchain, a secure "root" from which to build
a trusted blockchain.

See the statically encoded genesis block inside the Bitcoin Core client, in chainparams.cpp.

The following identifier hash belongs to the genesis block:

000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

You can search for that block hash in any block explorer website, such as blockchain.info, and you will
find a page describing the contents of this block, with a URL containing that hash:

https://blockchain.info/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

https://blockexplorer.com/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce
26f

Using the Bitcoin Core reference client on the command line:

$ bitcoind getblock 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

4

http://bit.ly/1x6rcwP
https://blockchain.info/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockexplorer.com/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockexplorer.com/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f


{
Ê   "hash" : "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
Ê   "confirmations" : 308321,
Ê   "size" : 285,
Ê   "height" : 0,
Ê   "version" : 1,
Ê   "merkleroot" : "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b",
Ê   "tx" : [
Ê       "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"
Ê   ],
Ê   "time" : 1231006505,
Ê   "nonce" : 2083236893,
Ê   "bits" : "1d00ffff",
Ê   "difficulty" : 1.00000000,
Ê   "nextblockhash" : "00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048"
}

The genesis block contains a hidden message within it. The coinbase transaction input contains the text
"The Times 03/Jan/2009 Chancellor on brink of second bailout for banks." This message was intended to
offer proof of the earliest date this block was created, by referencing the headline of the British
newspaper The Times. It also serves as a tongue-in-cheek reminder of the importance of an
independent monetary system, with bitcoinÕs launch occurring at the same time as an unprecedented
worldwide monetary crisis. The message was embedded in the first block by Satoshi Nakamoto,
bitcoinÕs creator.

Lier les Blocs dans la Blockchain
Bitcoin full nodes maintain a local copy of the blockchain, starting at the genesis block. The local copy
of the blockchain is constantly updated as new blocks are found and used to extend the chain. As a
node receives incoming blocks from the network, it will validate these blocks and then link them to the
existing blockchain. To establish a link, a node will examine the incoming block header and look for
the "previous block hash."

LetÕs assume, for example, that a node has 277,314 blocks in the local copy of the blockchain. The last
block the node knows about is block 277,314, with a block header hash of
00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249.

Le nÏud bitcoin reçoit alors le nouveau bloc du réseau, quÕil décrypte comme suivant:
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{
Ê   "size" : 43560,
Ê   "version" : 2,
Ê   "previousblockhash" :
Ê       "00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249",
Ê   "merkleroot" :
Ê       "5e049f4030e0ab2debb92378f53c0a6e09548aea083f3ab25e1d94ea1155e29d",
Ê   "time" : 1388185038,
Ê   "difficulty" : 1180923195.25802612,
Ê   "nonce" : 4215469401,
Ê   "tx" : [
Ê       "257e7497fb8bc68421eb2c7b699dbab234831600e7352f0d9e6522c7cf3f6c77",

Ê#[... beaucoup d'autres transactions ...]

Ê       "05cfd38f6ae6aa83674cc99e4d75a1458c165b7ab84725eda41d018a09176634"
Ê   ]
}

Looking at this new block, the node finds the previousblockhash field, which contains the hash of its
parent block. It is a hash known to the node, that of the last block on the chain at height 277,314.
Therefore, this new block is a child of the last block on the chain and extends the existing blockchain.
The node adds this new block to the end of the chain, making the blockchain longer with a new height
of 277,315. Blocks linked in a chain, by reference to the previous block header hash shows the chain of
three blocks, linked by references in the previousblockhash field.

Les Arbres de Merkle
Each block in the bitcoin blockchain contains a summary of all the transactions in the block, using a
merkle tree.

A merkle tree, also known as a binary hash tree, is a data structure used for efficiently summarizing
and verifying the integrity of large sets of data. Merkle trees are binary trees containing cryptographic
hashes. The term "tree" is used in computer science to describe a branching data structure, but these
trees are usually displayed upside down with the "root" at the top and the "leaves" at the bottom of a
diagram, as you will see in the examples that follow.
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Figure 1. Blocks linked in a chain, by reference to the previous block header hash

Merkle trees are used in bitcoin to summarize all the transactions in a block, producing an overall
digital fingerprint of the entire set of transactions, providing a very efficient process to verify whether
a transaction is included in a block. A Merkle tree is constructed by recursively hashing pairs of nodes
until there is only one hash, called the root, or merkle root. The cryptographic hash algorithm used in
bitcoinÕs merkle trees is SHA256 applied twice, also known as double-SHA256.

When N data elements are hashed and summarized in a merkle tree, you can check to see if any one
data element is included in the tree with at most 2*log~2~(N) calculations, making this a very efficient
data structure.

The merkle tree is constructed bottom-up. In the following example, we start with four transactions, A,
B, C and D, which form the leaves of the Merkle tree, as shown in Calculating the nodes in a merkle
tree. The transactions are not stored in the merkle tree; rather, their data is hashed and the resulting
hash is stored in each leaf node as HA, HB, HC, and HD:

H~A~ = SHA256(SHA256(Transaction A))

Consecutive pairs of leaf nodes are then summarized in a parent node, by concatenating the two
hashes and hashing them together. For example, to construct the parent node HAB, the two 32-byte
hashes of the children are concatenated to create a 64-byte string. That string is then double-hashed to
produce the parent nodeÕs hash:

H~AB~ = SHA256(SHA256(H~A~ + H~B~))

The process continues until there is only one node at the top, the node known as the Merkle root. That
32-byte hash is stored in the block header and summarizes all the data in all four transactions.
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Figure 2. Calculating the nodes in a merkle tree

Because the merkle tree is a binary tree, it needs an even number of leaf nodes. If there is an odd
number of transactions to summarize, the last transaction hash will be duplicated to create an even
number of leaf nodes, also known as a balanced tree. This is shown in Duplicating one data element
achieves an even number of data elements, where transaction C is duplicated.

Figure 3. Duplicating one data element achieves an even number of data elements

The same method for constructing a tree from four transactions can be generalized to construct trees
of any size. In bitcoin it is common to have several hundred to more than a thousand transactions in a
single block, which are summarized in exactly the same way, producing just 32 bytes of data as the
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single merkle root. In A merkle tree summarizing many data elements, you will see a tree built from 16
transactions. Note that although the root looks bigger than the leaf nodes in the diagram, it is the exact
same size, just 32 bytes. Whether there is one transaction or a hundred thousand transactions in the
block, the merkle root always summarizes them into 32 bytes.

To prove that a specific transaction is included in a block, a node only needs to produce log~2~(N) 32-
byte hashes, constituting an authentication path or merkle path connecting the specific transaction to
the root of the tree. This is especially important as the number of transactions increases, because the
base-2 logarithm of the number of transactions increases much more slowly. This allows bitcoin nodes
to efficiently produce paths of 10 or 12 hashes (320Ð384 bytes), which can provide proof of a single
transaction out of more than a thousand transactions in a megabyte-size block.

Figure 4. A merkle tree summarizing many data elements

In A merkle path used to prove inclusion of a data element, a node can prove that a transaction K is
included in the block by producing a merkle path that is only four 32-byte hashes long (128 bytes total).
The path consists of the four hashes (noted in blue in A merkle path used to prove inclusion of a data
element) HL, HIJ, HMNOP and HABCDEFGH. With those four hashes provided as an authentication path, any
node can prove that HK (noted in green in the diagram) is included in the merkle root by computing
four additional pair-wise hashes HKL, HIJKL, HIJKLMNOP, and the merkle tree root (outlined in a dotted line
in the diagram).

10



Figure 5. A merkle path used to prove inclusion of a data element

The code in Building a merkle tree demonstrates the process of creating a merkle tree from the leaf-
node hashes up to the root, using the libbitcoin library for some helper functions.

Example 1. Building a merkle tree

#include <bitcoin/bitcoin.hpp>

bc::hash_digest create_merkle(bc::hash_list& merkle)
{
Ê   // Stop if hash list is empty.
Ê   if (merkle.empty())
Ê       return bc::null_hash;
Ê   else if (merkle.size() == 1)
Ê       return merkle[0];

Ê   // While there is more than 1 hash in the list, keep looping...
Ê   while (merkle.size() > 1)
Ê   {
Ê       // If number of hashes is odd, duplicate last hash in the list.
Ê       if (merkle.size() % 2 != 0)
Ê           merkle.push_back(merkle.back());
Ê       // List size is now even.
Ê       assert(merkle.size() % 2 == 0);

Ê       // New hash list.
Ê       bc::hash_list new_merkle;
Ê       // Loop through hashes 2 at a time.
Ê       for (auto it = merkle.begin(); it != merkle.end(); it += 2)
Ê       {
Ê           // Join both current hashes together (concatenate).
Ê           bc::data_chunk concat_data(bc::hash_size * 2);
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Ê           auto concat = bc::make_serializer(concat_data.begin());
Ê           concat.write_hash(*it);
Ê           concat.write_hash(*(it + 1));
Ê           assert(concat.iterator() == concat_data.end());
Ê           // Hash both of the hashes.
Ê           bc::hash_digest new_root = bc::bitcoin_hash(concat_data);
Ê           // Add this to the new list.
Ê           new_merkle.push_back(new_root);
Ê       }
Ê       // This is the new list.
Ê       merkle = new_merkle;

Ê       // DEBUG output -------------------------------------
Ê       std::cout << "Current merkle hash list:" << std::endl;
Ê       for (const auto& hash: merkle)
Ê           std::cout << "  " << bc::encode_hex(hash) << std::endl;
Ê       std::cout << std::endl;
Ê       // --------------------------------------------------
Ê   }
Ê   // Finally we end up with a single item.
Ê   return merkle[0];
}

int main()
{
Ê   // Replace these hashes with ones from a block to reproduce the same merkle root.
Ê   bc::hash_list tx_hashes{{
Ê
bc::hash_literal("0000000000000000000000000000000000000000000000000000000000000000"),
Ê
bc::hash_literal("0000000000000000000000000000000000000000000000000000000000000011"),
Ê
bc::hash_literal("0000000000000000000000000000000000000000000000000000000000000022"),
Ê   }};
Ê   const bc::hash_digest merkle_root = create_merkle(tx_hashes);
Ê   std::cout << "Result: " << bc::encode_hex(merkle_root) << std::endl;
Ê   return 0;
}

Compiling and running the merkle example code shows the result of compiling and running the
merkle code.
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Example 2. Compiling and running the merkle example code

$ # Compile the merkle.cpp code
$ g++ -o merkle merkle.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Run the merkle executable
$ ./merkle
Current merkle hash list:
Ê 32650049a0418e4380db0af81788635d8b65424d397170b8499cdc28c4d27006
Ê 30861db96905c8dc8b99398ca1cd5bd5b84ac3264a4e1b3e65afa1bcee7540c4

Current merkle hash list:
Ê d47780c084bad3830bcdaf6eace035e4c6cbf646d103795d22104fb105014ba3

Result: d47780c084bad3830bcdaf6eace035e4c6cbf646d103795d22104fb105014ba3

The efficiency of merkle trees becomes obvious as the scale increases. Merkle tree efficiency shows the
amount of data that needs to be exchanged as a merkle path to prove that a transaction is part of a
block.

Table 3. Merkle tree efficiency

Number of
transactions

Approx. size of block Path size (hashes) Path size (bytes)

16 transactions 4 kilobytes 4 hashes 128 bytes

512 transactions 128 kilobytes 9 hashes 288 bytes

2048 transactions 512 kilobytes 11 hashes 352 bytes

65,535 transactions 16 megabytes 16 hashes 512 bytes

As you can see from the table, while the block size increases rapidly, from 4 KB with 16 transactions to
a block size of 16 MB to fit 65,535 transactions, the merkle path required to prove the inclusion of a
transaction increases much more slowly, from 128 bytes to only 512 bytes. With merkle trees, a node
can download just the block headers (80 bytes per block) and still be able to identify a transactionÕs
inclusion in a block by retrieving a small merkle path from a full node, without storing or transmitting
the vast majority of the blockchain, which might be several gigabytes in size. Nodes that do not
maintain a full blockchain, called simplified payment verification (SPV nodes), use merkle paths to
verify transactions without downloading full blocks.

Merkle Trees and Simplified Payment Verification (SPV)
Merkle trees are used extensively by SPV nodes. SPV nodes donÕt have all transactions and do not
download full blocks, just block headers. In order to verify that a transaction is included in a block,
without having to download all the transactions in the block, they use an authentication path, or
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merkle path.

Consider, for example, an SPV node that is interested in incoming payments to an address contained in
its wallet. The SPV node will establish a bloom filter on its connections to peers to limit the transactions
received to only those containing addresses of interest. When a peer sees a transaction that matches
the bloom filter, it will send that block using a merkleblock message. The merkleblock message
contains the block header as well as a merkle path that links the transaction of interest to the merkle
root in the block. The SPV node can use this merkle path to connect the transaction to the block and
verify that the transaction is included in the block. The SPV node also uses the block header to link the
block to the rest of the blockchain. The combination of these two links, between the transaction and
block, and between the block and blockchain, proves that the transaction is recorded in the blockchain.
All in all, the SPV node will have received less than a kilobyte of data for the block header and merkle
path, an amount of data that is more than a thousand times less than a full block (about 1 megabyte
currently).
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Minage et Consensus

Introduction
Le minage est le processus par lequel de nouveaux bitcoins sont ajoutés à la masse monétaire. Il
permet aussi de sécuriser le système bitcoin contre les transactions frauduleuses ou celles dépensant le
même montant de bitcoin plus dÕune fois, connu en tant que double-dépense. Les mineurs fournissent
la puissance de calcul au réseau bitcoin en échange dÕune récompense en bitcoins.

Les mineurs valident les nouvelles transactions et les enregistrent dans le registre global. Un nouveau
bloc, contenant les transactions apparues depuis le dernier bloc, est Ç miné È toutes les 10 minutes en
moyenne, ajoutant ainsi ces transactions à la blockchain. Les transactions qui font désormais partie
dÕun bloc et sont ajoutées à la blockchain sont considérées comme Ç confirmées È, ce qui autorise les
nouveaux propriétaires de bitcoin à dépenser ce quÕils ont reçu dans de nouvelles transactions.

Les mineurs reçoivent deux types de récompenses en échange de leur minage : de nouveaux bitcoins
créées avec chaque nouveau bloc, et les frais de transaction de toutes les transactions comprises dans
le bloc. Pour gagner cette récompense, les mineurs sÕaffrontent pour résoudre un difficile problème
mathématique basé sur un algorithme de hachage cryptographique. La solution au problème, appelée
preuve de travail, est incluse dans le nouveau bloc et tient lieu de preuve aux efforts de calcul
importants déployés par le mineur. La compétition pour résoudre lÕalgorithme preuve-de-travail afin
de gagner la récompense et le droit dÕenregistrer les transactions sur la blockchain est la base du
modèle de sécurité bitcoin.

Le processus de génération de nouveaux bitcoins est appelé minage parce que la récompense est
conçue de manière à simuler des rendements en baisse, similairement au minage de métaux précieux.
La masse monétaire bitcoin est créée à travers le minage, de la même façon quÕune banque centrale
émet de la monnaie en imprimant de nouveaux billets. La quantité de bitcoins nouvellement créés
quÕun mineur peut ajouter à un bloc décroit approximativement tous les quatre ans (ou précisément
tous les 210 000 blocs). Cela a commencé à 50 bitcoins par bloc en Janvier 2009 et fut réduit de moitié à
25 bitcoins par bloc en Novembre 2012. Il sera à nouveau réduit de moitié à 12,5 bitcoins par bloc dans
le courant de lÕannée 2016. Sur la base de cette formule, les récompenses au minage de bitcoin
diminuent de façon exponentielle jusquÕà environ lÕannée 2140, quand tous les bitcoins (20,99999998
millions) auront été délivrés. Après 2140, aucun nouveau bitcoin ne sera émis.

Les mineurs de bitcoins acquièrent également les frais de transactions. Chaque transaction peut
inclure des frais de transaction, correspondant à lÕexcédent entre les entrées et les sorties dÕune
transaction. Le mineur gagnant parvient à "garder la monnaie" sur les transactions incluses dans le
bloc gagnant. AujourdÕhui, les frais représentent 0,5% ou moins du revenu dÕun mineur de bitcoin, la
grande majorité provenant des bitcoins nouvellement frappés. Cependant, comme la récompense
diminue avec le temps et que le nombre de transactions par blocs augmente, une plus grande
proportion des revenus du minage proviendra des frais. Après 2140, tous les revenus des mineurs
viendront des frais de transaction.
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Le mot Ç minage È est quelque peu trompeur. En évoquant lÕextraction de métaux précieux, il attire
notre attention sur la récompense du minage, les nouveaux bitcoins dans chaque bloc. Bien que le
minage soit encouragé par cette récompense, le but principal du minage nÕest pas la récompense ou la
génération de nouvelles pièces. Si vous voyez seulement le minage comme le processus par lequel les
bitcoins sont créés, vous confondez les moyens (les mesures dÕincitation) et le but du processus. Le
minage est le processus principal de la chambre de compensation décentralisée par lequel les
transactions sont validées. Le minage sécurise le système bitcoin et permet lÕémergence dÕun
consensus sur tout le réseau sans autorité centrale.

Le minage est lÕinvention qui rend bitcoin spécial, un mécanisme de sécurité décentralisé qui constitue
la base de la monnaie numérique pair-à-pair. La récompense en pièces nouvellement frappées et en
frais de transaction est une mesure dÕincitation qui aligne les actions des mineurs à la sécurité du
réseau, Ïuvrant dans le même temps à la création monétaire.

Dans ce chapitre, nous examinerons dÕabord le minage en tant que mécanisme de création monétaire
puis nous étudierons sa fonction la plus importante : le mécanisme de consensus émergent
décentralisé qui fonde la sécurité du bitcoin.

LÕéconomie bitcoin et la création monétaire

Les bitcoins sont "frappés" lors de la création de chaque bloc à un taux défini qui va en diminuant.
Chaque bloc, généré en moyenne toutes les 10 minutes, contient entièrement de nouveaux bitcoins,
créés à partir de rien. Tous les 210 000 blocs, soit environ tous les quatre ans, le taux dÕémission de la
monnaie est diminué de 50%. Pour les quatre premières années de fonctionnement du réseau, chaque
bloc contenait 50 nouveaux bitcoins.

En Novembre 2012, le nouveau taux dÕémission de bitcoin a été réduit à 25 bitcoins par bloc et il
diminuera de nouveau à 12,5 bitcoins au bloc 420 000, qui sera miné courant 2016. Le taux de nouvelle
monnaie diminue de façon exponentiel sur 64 "division par deux" jusquÕau bloc 13 230 000 (miné
approximativement en 2137), où il atteindra lÕunité de monnaie minimum de 1 satoshi. Enfin, après
13,44 millions blocs, en 2140 environ, près de 2 099 999 997 690 000 satoshis, soit près de 21 millions de
bitcoins, seront émis. En conséquence, les blocs ne contiendront pas de nouveaux bitcoins, et les
mineurs seront récompensés uniquement grâce aux frais de transaction. LÕémission de devise bitcoin
au fil du temps basée sur un taux dÕémission diminuant de façon mathématique représente le nombre
total de bitcoins en circulation au fil du temps, ainsi que lÕémission de monnaie qui diminue.
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Figure 1. LÕémission de devise bitcoin au fil du temps basée sur un taux dÕémission diminuant de façon
mathématique

NOTE

Le nombre maximum de pièces minées est la limite supérieure de possibles
récompenses au minage. Dans la pratique, un mineur peut volontairement miner un
bloc et ne pas récupérer la totalité de sa récompense. De tels blocs ont déjà été minés et
dÕautres peuvent lÕêtre à lÕavenir, résultant en une émission totale de la monnaie
moindre.

Dans lÕexemple de code [max_money], nous calculons la quantité totale de bitcoins qui sera émise.

Example 1. Un script pour calculer combien de bitcoins seront émis

# Original block reward for miners was 50 BTC
start_block_reward = 50
# 210000 is around every 4 years with a 10 minute block interval
reward_interval = 210000

def max_money():
Ê   # 50 BTC = 50 0000 0000 Satoshis
Ê   current_reward = 50 * 10**8
Ê   total = 0
Ê   while current_reward > 0:
Ê       total += reward_interval * current_reward
Ê       current_reward /= 2
Ê   return total

print "Total BTC to ever be created:", max_money(), "Satoshis"
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Exécution du script max_money.py représente la sortie produite par lÕexécution de ce script.

Example 2. Exécution du script max_money.py

$ python max_money.py
Total BTC to ever be created: 2099999997690000 Satoshis

LÕémission finie et en diminution crée une masse monétaire fixe qui résiste à lÕinflation. Contrairement
à une monnaie fiduciaire, qui peut être imprimé en nombre infini par une banque centrale, le bitcoin
ne peut jamais être augmenté par impression.

Une monnaie déflationniste

La conséquence la plus importante et débattue dÕune émission monétaire fixe et en diminution
est que la monnaie aura tendance à être intrinsèquement déflationniste. La déflation est le
phénomène de hausse de la valeur en raison de lÕinadéquation entre lÕoffre et la demande, ce qui
fait monter la valeur (et le taux de change) dÕune monnaie. Le contraire de lÕinflation, la
déflation des prix signifie que lÕargent a plus de pouvoir dÕachat au fil du temps.

De nombreux économistes estiment quÕune économie déflationniste est une catastrophe qui doit
être évitée à tout prix. En effet, dans une période de déflation rapide, les gens ont tendance à
thésauriser lÕargent au lieu de le dépenser, en espérant que les prix vont baisser. Un tel
phénomène sÕest déroulé au cours de la "Décennie perdue" au Japon, quand un effondrement
complet de la demande a poussé la monnaie dans une spirale déflationniste.

Les experts bitcoin estiment que la déflation nÕest pas mauvaise en soi. Au contraire, la déflation
est associée à un effondrement de la demande parce que cÕest le seul exemple de déflation que
nous pouvons étudier. Dans une monnaie fiduciaire avec la possibilité dÕimpression illimitée, il
est très difficile dÕentrer dans une spirale déflationniste sauf sÕil y a un effondrement complet de
la demande et une réticence à imprimer de lÕargent. La déflation du bitcoin nÕest pas causée par
un effondrement de la demande, mais par une réserve limitée de manière prévisible.

Dans la pratique, il est devenu évident que lÕinstinct de thésaurisation causé par une monnaie
déflationniste peut être surmonté par des marchands prêts à faire des remises, jusquÕà ce que la
remise surmonte lÕinstinct de thésaurisation de lÕacheteur. Parce que le vendeur est aussi motivé
pour thésauriser, la remise devient le prix dÕéquilibre sur lequel les deux instincts de
thésaurisation se retrouvent au même niveau. Avec des rabais de 30% sur le prix bitcoin, la
plupart des détaillants bitcoin nÕont pas de difficulté à surmonter lÕinstinct de thésaurisation et à
générer des revenus. Il reste à déterminer si lÕaspect déflationniste de la monnaie est vraiment
un problème quand il nÕest pas entraîné par une rétraction économique rapide.
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Le consensus décentralisé
Dans le chapitre précédent, nous nous sommes intéressé à la blockchain, le registre (ou liste) public
mondial de toutes les transactions, que tout le monde sur le réseau bitcoin accepte comme lÕacte de
propriété faisant autorité.

Mais comment lÕensemble du réseau peut sÕentendre sur une unique Ç vérité È universelle concernant
qui possède quoi, sans avoir à faire confiance à personne ? Tous les systèmes de paiement traditionnels
dépendent dÕun modèle de confiance qui a une autorité centrale fournissant un service de
compensation, essentiellement la vérification et la validation de toutes les transactions. Bitcoin nÕa pas
dÕautorité centrale, et pourtant chaque nÏud complet a la copie complète dÕun registre public auquel il
peut se fier comme étant le registre faisant autorité. La blockchain nÕest pas créée par une autorité
centrale, mais est assemblée de façon indépendante par chaque noeud du réseau. DÕune manière ou
dÕune autre, chaque nÏud sur le réseau, agissant suite à la reception dÕinformations transmises à
travers des connexions réseau non sécurisées, peut arriver à la même conclusion et assembler une
copie du même registre public que tout le monde. Ce chapitre examine le processus par lequel le
réseau bitcoin réalise un consensus global sans autorité centrale.

LÕinvention principale de Satoshi Nakamoto est le mécanisme décentralisé pour un consensus
émergent. Emergent, parce que le consensus nÕest pas atteint explicitement Ð il nÕy a pas dÕélection ou
de moment établi où le consensus se produit. Au lieu de cela, le consensus est un artefact émergent de
lÕinteraction asynchrone de milliers de noeuds indépendants, tous suivant des règles simples. Toutes
les caractéristiques de bitcoin, incluant la monnaie, les transactions, les paiements et le modèle de
sécurité qui ne dépend pas dÕune autorité centrale ou de la confiance, dérivent de cette invention.

Le consensus décentralisé bitcoin émerge de lÕinteraction de quatre processus qui se produisent
indépendamment sur des nÏuds à travers le réseau :

¥ La vérification indépendante de chaque transaction, par chaque noeud complet, sur la base dÕune
liste exhaustive de critères

¥ LÕagrégation indépendante de ces transactions dans de nouveaux blocs par les noeuds de minage,
couplé aux calculs du matériel informatique prouvé par un algorithme proof-of-work

¥ La vérification indépendante des nouveaux blocs par chaque nÏud et leur assemblage dans une
chaîne

¥ La sélection indépendante, par chaque noeud, de la chaîne avec le plus de calculs démontrés par la
preuve du travail

Dans les prochaines sections nous allons examiner ces processus et comment ils interagissent pour
créer la caractéristique émergente de consensus de lÕensemble du réseau qui permet à nÕimporte quel
nÏud bitcoin dÕassembler sa propre copie du registre mondiale faisant autorité, de confiance et public.

Vérification indépendante des transactions
Dans [transactions], nous avons vu comment les logiciels portefeuilles créent des transactions en
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collectant les UTXO, fournissent les scripts de déverrouillage appropriés, construisant alors de
nouvelles sorties assignées à un nouveau propriétaire. La transaction résultante est alors envoyée aux
noeuds voisins dans le réseau bitcoin afin quÕelle puisse être propager à travers lÕensemble du réseau.

Cependant, avant de transmettre les transactions à ses voisins, chaque nÏud bitcoin qui reçoit une
transaction va dÕabord la vérifier. Cela garantit que seules les transactions valides sont propagées à
travers le réseau, tandis que les transactions non valides sont rejetées au premier noeud qui les
rencontre.

Chaque nÏud vérifie toutes les transactions en fonction dÕune longue liste de critères :

¥ La syntaxe de la transaction et la structure de données doivent être correctes.

¥ Ni les listes dÕentrées ou de sorties ne sont vides.

¥ La taille de la transaction en octets est inférieure à MAX_BLOCK_SIZE.

¥ Chaque valeur de sortie, ainsi que le total, doivent être dans la plage autorisée de valeurs (moins de
21 millions de pièces, plus de 0).

¥ Aucunes des entrées ont hash = 0, N = -1 (les transactions coinbase ne doivent pas être transmises).

¥ nLockTime est inférieur ou égal à INT_MAX.

¥ La taille en octets de la transaction est supérieure ou égale à 100.

¥ Le nombre dÕopérations de signature contenues dans la transaction est inférieur à la limite
dÕopération de signature.

¥ Le script de déverrouillage (scriptSig) peut seulement placer des nombres sur la pile, et le script de
verrouillage (scriptPubkey) doit correspondre aux règles isStandard (ceci rejette les transactions
"non standard").

¥ Une transaction correspondante dans la pool, ou dans un bloc de la branche principale, doit
exister.

¥ Pour chaque entrée, si la sortie référencée existe dans toute autre opération dans la pool, la
transaction doit être rejetée.

¥ Pour chaque entrée, regarder dans la branche principale et la pool de transaction pour trouver la
transaction de sortie référencée. Si la transaction de sortie est manquante pour une entrée, ce sera
une transaction dÕorphelin. Ajouter à la pool des transactions orphelines, si une transaction
correspondante nÕest pas déjà dans la pool.

¥ Pour chaque entrée, si la transaction de sortie référencée est une sortie coinbase, il doit avoir au
moins COINBASE_MATURITY (100) confirmations.

¥ Pour chaque entrée, la sortie référencée doit exister et ne peut pas être déjà dépensée.

¥ En utilisant les transactions de sortie référencées pour obtenir les valeurs dÕentrée, vérifier que
chaque valeur dÕentrée, ainsi que la somme, sont dans la plage de valeurs autorisée (moins de 21
millions de pièces, plus de 0).

¥ Rejeter si la somme des valeurs dÕentrée est inférieur à la somme des valeurs de sortie.
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¥ Rejeter si les frais de transaction serait trop faible pour être placer dans un bloc vide.

¥ Les scripts de déverrouillage pour chaque entrée doivent être valider par les scripts de verrouillage
de sortie correspondants.

Ces conditions peuvent être vues en détail dans les fonctions AcceptToMemoryPool, CheckTransaction
et CheckInputs dans le client de référence bitcoin. Notez que les conditions changent au fil du temps,
pour répondre aux nouveaux types dÕattaques par déni de service ou parfois pour assouplir les règles
de manière à inclure davantage de types de transactions.

En vérifiant indépendamment chaque transaction dès sa réception et avant de la propager, chaque
nÏud construit une pool de transactions valides (mais non confirmées) connus sous le nom de pool de
transaction, pool de memoire ou mempool.

Les nÏuds de minage
Certains des nÏuds du réseau bitcoin sont des noeuds spécialisés appelés mineurs. Dans
[ch01_intro_what_is_bitcoin] nous avons introduit Jing, un étudiant en génie informatique à Shanghai,
en Chine, qui est un mineur de bitcoin. Jing gagne des bitcoins en exécutant un "mining rig", du
matériel informatique spécialement conçu pour miner des bitcoins. Le matériel de minage de Jing est
connecté à un serveur exécutant un noeud bitcoin complet. Contrairement à Jing, certains mineurs
minent sans un noeud complet, comme nous allons le voir dans Les pools de minage. Comme chaque
autre noeud complet, le nÏud de Jing reçoit et propage les transactions non confirmées sur le réseau
bitcoin. Le nÏud de Jing, toutefois, agrège également ces transactions dans de nouveaux blocs.

Le nÏud de Jing est à lÕécoute de nouveaux blocs propagés sur le réseau bitcoin, comme le font tous les
nÏuds. Cependant, lÕarrivée dÕun nouveau bloc a une signification particulière pour un nÏud de
minage. En effet, la concurrence entre les mineurs se termine avec la propagation dÕun nouveau bloc
qui agit comme une annonce signalant un gagnant. Pour les mineurs, la réception dÕun nouveau bloc
signifie que quelquÕun dÕautre a remporté le concours et quÕils ont perdu. Cependant, dans une
compétition, la fin dÕun tour est aussi le début dÕun prochain. Le nouveau bloc nÕest pas seulement la
ligne dÕarrivée marquant la fin de la course; il est aussi le coup dÕenvoi pour le bloc suivant.

Agréger les transactions dans des blocs
Après la validation des transactions, un noeud bitcoin les ajoutera à la pool de mémoire ou pool de
transaction, où les transactions attendent jusquÕà ce quÕelles puissent être incluses (minées) dans un
bloc. Le nÏud de Jing recueille, valide et relaie les nouvelles transactions comme tout autre nÏud.
Contrairement à dÕautres nÏuds, cependant, le nÏud de Jing va ensuite agréger ces transactions dans
un bloc candidat.

Suivons les blocs qui ont été créés depuis quÕAlice a acheté une tasse de café au bar de Bob (voir
[cup_of_coffee]). La transaction dÕAlice a été incluse dans le bloc 277 316. Dans le but dÕexpliquer
certains concepts dans ce chapitre, supposons que le bloc a été miné par le système de minage de Jing
et voyons la transaction dÕAlice au moment où elle intègre ce nouveau bloc.
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Le noeud de minage de Jing conserve une copie locale de la blockchain, la liste de tous les blocs créés
depuis le début du système bitcoin en 2009. Au moment où Alice achète sa tasse de café, le nÏud de
Jing a assemblé une chaîne allant jusquÕau bloc 277 314. Le nÏud de Jing est à lÕécoute de transactions,
essayant de miner un nouveau bloc et aussi écoutant les blocs découverts par dÕautres nÏuds. Alors
que le nÏud de Jing est en train de miner, il reçoit le bloc 277 315 via le réseau bitcoin. LÕarrivée de ce
bloc signifie la fin de la compétition pour le bloc 277 315 et le début de la compétition pour créer le
bloc 277 316.

Durant les 10 minutes précédentes, alors que le nÏud de Jing était à la recherche dÕune solution pour
le bloc 277 315, il recueillait également les transactions en préparation du bloc suivant. Actuellement, il
a rassemblé quelques centaines de transactions dans la pool mémoire. Après avoir reçu le bloc 277 315
et lÕavoir valider, le nÏud de Jing vérifiera également toutes les transactions dans la pool mémoire et
supprimera celles qui ont été incluses dans le bloc 277 315. NÕimporte quelles transactions restant dans
la pool mémoire sont non-confirmées et sont en attente dÕêtre enregistrées dans un nouveau bloc.

Le nÏud de Jing construit immédiatement un nouveau bloc vide, un candidat pour le bloc 277 316. Ce
bloc est appelé un bloc candidat parce quÕil nÕest pas encore un bloc valide, ne contenant pas une
preuve de travail valide. Le bloc devient valide seulement si le mineur parvient à trouver une solution
à lÕalgorithme proof-of-work.

Age dÕune transaction, frais et priorité

Pour construire le bloc candidat, le nÏud bitcoin de Jing sélectionne les transactions de la pool
mémoire en appliquant un indicateur de priorité à chaque transaction et en ajoutant en premier les
transactions les plus prioritaires. Les transactions sont prioritaires en fonction de Ç lÕâge È de lÕUTXO
qui est dépensé dans leurs entrées, permettant aux entrées âgées et à forte valeur dÕêtre prioritaire sur
les entrées récentes et plus petites. Les transactions prioritaires peuvent être envoyées sans frais, si il y
a assez dÕespace dans le bloc.

La priorité dÕune transaction est calculée comme étant la somme de la valeur et de lÕâge des entrées
divisé par la taille totale de la transaction :

Priorité = Somme (Valeur de l'entrée * Age de l'entrée) / Taille de la transaction

Dans cette équation, la valeur dÕune entrée est mesurée dans lÕunité de base, cÕest-à-dire en satoshis
(1/100 de million de bitcoin). LÕâge dÕun UTXO est le nombre de blocs qui se sont écoulées depuis que
lÕUTXO a été enregistré sur la blockchain, mesurant sa "profondeur" dans la blockchain. La taille de la
transaction est mesurée en octets.

Pour quÕune transaction soit considérée comme Ç hautement prioritaire È, sa priorité doit être
supérieure à 57 600 000, ce qui correspond à un bitcoin (100 millions de satoshis), âgé dÕun jour (144
blocs), dans une transaction dÕune taille totale de 250 octets :

Priorité élevée > 100 000 000 satoshis * 144 blocs / 250 octets = 57 600 000
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Les 50 premiers kilo-octets dÕespace de transaction dans un bloc sont mis de côté pour les transactions
à haute priorité. Le nÏud de Jing remplira les 50 premiers kilo-octets, passant en priorité les plus
prioritaires dÕentre elles, quel que soit les frais. Cela permet aux transactions hautement prioritaires
dÕêtre traiter, même si elles nÕont aucun frais.

Le noeud de minage de Jing remplit alors le reste du bloc jusquÕà la taille de bloc maximale
(MAX_BLOCK_SIZE dans le code), avec des transactions qui portent au moins les frais minimals,
favorisant celles avec les plus grands frais par kilo-octet de transaction.

SÕil reste de lÕespace dans le bloc, le nÏud de minage de Jing pourrait choisir de le remplir avec des
transactions sans frais. Certains mineurs choisissent de miner des transactions sans frais sur une base
best-effort. DÕautres mineurs peuvent choisir dÕignorer les transactions sans frais.

Toutes les transactions laissées dans la pool mémoire, après que le bloc soit rempli, resteront dans la
pool pour inclusion dans le bloc suivant. Comme les transactions restent dans la pool mémoire, leurs
entrées Ç vieillissent È, au fur et à mesure que lÕUTXO quÕils dépensent sÕenfoncent plus profondément
dans la blockchain avec de nouveaux blocs ajoutés par dessus. Parce que la priorité dÕune transaction
dépend de lÕâge de ses entrées, les transactions restantes dans la pool vieilliront et augmenteront par
conséquent en priorité. A la longue, une transaction sans frais peut atteindre une priorité
suffisamment élevée pour être incluse dans un bloc gratuitement.

Les transactions bitcoin ne disposent pas dÕun délai dÕexpiration. Une transaction qui est valable
aujourdÕhui sera valide à perpétuité. Toutefois, si une transaction est seulement propagée une seule
fois à travers le réseau, elle persistera aussi longtemps quÕelle est maintenu dans la pool mémoire dÕun
nÏud de minage. Quand un nÏud de minage est redémarré, sa pool mémoire est effacée, car cÕest une
forme non-persistante de stockage. Bien quÕune transaction valide aurait pu être propagée à travers le
réseau, si ce nÕest pas fait il est possible quÕelle ne réside dans la pool mémoire dÕaucuns mineurs. Les
logiciels de portefeuille devraient retransmettre ces transactions ou les reconstruire avec des frais plus
élevés si elles ne sont pas exécutées avec succès dans un laps de temps raisonnable.

Lorsque le nÏud de Jing agrège toutes les transactions à partir de la pool mémoire, le nouveau bloc
candidat a 418 transactions avec un total de frais de transaction de 0,09094928 bitcoin. Vous pouvez
voir ce bloc dans la blockchain en utilisant lÕinterface en ligne de commande du client Bitcoin Core,
comme indiqué dans Bloc 277 316.

$ bitcoin-cli getblockhash
2773160000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4

$ bitcoin-cli getblock
0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4
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Example 3. Bloc 277 316

{
Ê   "hash" : "0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4",
Ê   "confirmations" : 35561,
Ê   "size" : 218629,
Ê   "height" : 277316,
Ê   "version" : 2,
Ê   "merkleroot" :
"c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51eb4cc7cf2e",
Ê   "tx" : [
Ê       "d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f",
Ê       "b268b45c59b39d759614757718b9918caf0ba9d97c56f3b91956ff877c503fbe",

Ê       ... 417 autres transactions ...

Ê      ],
Ê   "time" : 1388185914,
Ê   "nonce" : 924591752,
Ê   "bits" : "1903a30c",
Ê   "difficulty" : 1180923195.25802612,
Ê   "chainwork" : "000000000000000000000000000000000000000000000934695e92aaf53afa1a",
Ê   "previousblockhash" :
"0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569",
Ê   "nextblockhash" :
"000000000000000010236c269dd6ed714dd5db39d36b33959079d78dfd431ba7"
}

La transaction de production

La première transaction ajoutée au bloc est une transaction spéciale, appelée transaction de production
ou transaction coinbase. Cette transaction est réalisée par le noeud de Jing et constitue sa récompense
pour lÕeffort de minage. Le nÏud de Jing crée la transaction de production comme un paiement à son
propre portefeuille : "Paie lÕadresse de Jing 25,09094928 bitcoins." Le montant total de la récompense
que Jing recueille pour le minage dÕun bloc est la somme de la récompense coinbase (25 nouveaux
bitcoins) et les frais de transaction (0,09094928) de toutes les transactions comprises dans le bloc
comme indiqué dans Transaction de production :

$ bitcoin-cli getrawtransaction
d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f 1
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Example 4. Transaction de production

{
Ê   "hex" :
"01000000010000000000000000000000000000000000000000000000000000000000000000ffffffff0f
03443b0403858402062f503253482fffffffff0110c08d9500000000232102aa970c592640d19de03ff6f
329d6fd2eecb023263b9ba5d1b81c29b523da8b21ac00000000",
Ê   "txid" : "d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f",
Ê   "version" : 1,
Ê   "locktime" : 0,
Ê   "vin" : [
Ê       {
Ê           "coinbase" : "03443b0403858402062f503253482f",
Ê           "sequence" : 4294967295
Ê       }
Ê   ],
Ê   "vout" : [
Ê       {
Ê           "value" : 25.09094928,
Ê           "n" : 0,
Ê           "scriptPubKey" : {
Ê               "asm" :
"02aa970c592640d19de03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21OP_CHECKSIG",
Ê               "hex" :
"2102aa970c592640d19de03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21ac",
Ê               "reqSigs" : 1,
Ê               "type" : "pubkey",
Ê               "addresses" : [
Ê                   "1MxTkeEP2PmHSMze5tUZ1hAV3YTKu2Gh1N"
Ê               ]
Ê           }
Ê       }
Ê   ],
Ê   "blockhash" : "0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4",
Ê   "confirmations" : 35566,
Ê   "time" : 1388185914,
Ê   "blocktime" : 1388185914
}

Contrairement aux transactions normales, la transaction de production ne consomme pas (dépense)
dÕUTXO comme entrées. Au lieu de cela, elle a une seule entrée, appelé le coinbase, qui crée des bitcoins
à partir de rien. La transaction de production dispose dÕune sortie, payable à lÕadresse bitcoin du
mineur. La sortie de la transaction de production envoie la valeur de 25,09094928 bitcoins à lÕadresse
bitcoin du mineur, dans ce cas 1MxTkeEP2PmHSMze5tUZ1hAV3YTKu2Gh1N.

11



Récompense coinbase et frais

Pour construire la transaction de production, le nÏud de Jing calcule en premier le montant total des
frais de transaction en ajoutant toutes les entrées et sorties des 418 transactions qui ont été ajoutés au
bloc. Les frais sont calculés comme suit :

Total des frais = Somme (entrées) - Somme (sorties)

Dans le bloc 277 316, les frais totaux de transaction sont de 0,09094928 bitcoins.

Ensuite, le nÏud de Jing calcule la récompense correcte pour le nouveau bloc. La récompense est
calculé en fonction de la hauteur du bloc, à partir de 50 bitcoins par bloc et réduit de moitié tous les
210 000 blocs. Parce que ce bloc est à la hauteur de 277 316, la bonne récompense est 25 bitcoins.

Le calcul peut être vu dans la fonction GetBlockValue dans le client Bitcoin Core, comme représenté sur
Calculer la récompense de bloc Ð Fonction GetBlockValue, client Bitcoin Core, main.cpp, ligne 1305.

Example 5. Calculer la récompense de bloc Ð Fonction GetBlockValue, client Bitcoin Core, main.cpp, ligne
1305

int64_t GetBlockValue(int nHeight, int64_t nFees)
{
Ê   int64_t nSubsidy = 50 * COIN;
Ê   int halvings = nHeight / Params().SubsidyHalvingInterval();

Ê   // Force la récompense à zéro lorsque le décalage à droite est indéfinie.
Ê   if (halvings >= 64)
Ê       return nFees;

Ê   // 'Subsidy' est réduit de moitié tous les 210 000 blocs qui vont se produire
environ tous les 4 ans.
Ê   nSubsidy >>= halvings;

Ê   return nSubsidy + nFees;
}

La subvention initiale est calculé en satoshis en multipliant 50 avec la constante COIN (100 000 000
satoshis). Ceci définit la récompense initiale (nSubsidy) à 5 milliards de satoshis.

Ensuite, la fonction calcule le nombre de halvings (réduction de moitié, dédoublement) qui ont eu lieu
en divisant la hauteur du bloc courant par lÕinterval de dédoublement (SubsidyHalvingInterval). Dans
le cas du bloc 277 316, avec un interval de dédoublement tous les 210 000 blocs, le résultat est de 1
dédoublement.
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Le nombre maximum de dédoublements permis est de 64, afin que le code impose une récompense de
zéro (retourne seulement les frais) si les 64 dédoublements sont dépassés.

Ensuite, la fonction utilise lÕopérateur binaire de décalage vers la droite pour diviser la récompense
(nSubsidy) par deux pour chaque tour de dédoublement. Dans le cas du bloc 277 316, cela va être
appliqué une fois à la récompense de 5 milliards satoshis (une réduction de moitié) et se traduire par
2,5 milliards de satoshis, ou 25 bitcoins. LÕopérateur binaire de décalage vers la droite est utilisé car il
est plus efficace pour la division par deux que la division dÕentier ou de nombre à virgule flottante.

Enfin, la récompense coinbase (nSubsidy) est ajouté aux frais de transaction (nFees), et la somme est
retournée.

Structure de la transaction de production

Avec ces calculs, le nÏud de Jing construit alors la transaction de génération pour se payer à lui-même
25,09094928 bitcoins.

Comme vous pouvez le voir dans Transaction de production, la transaction de génération a un format
spécial. Au lieu dÕune entrée de transaction spécifiant un précédent UTXO, il a une entrée "coinbase".
Nous avons examiné les entrées de transaction dans [tx_in_structure]. Comparons une entrée de
transaction ordinaire avec une entrée de transaction de génération. La structure dÕune entrée de
transaction "normale" représente la structure dÕune transaction ordinaire, tandis que La structure
dÕune entrée de transaction de génération représente la structure dÕune transaction de génération.

Table 1. La structure dÕune entrée de transaction "normale"

Taille Champ Description

32 octets Hash de transaction Pointeur vers la transaction
contenant lÕUTXO à dépenser

4 octets Index de la sortie Le numéro dÕindex de lÕUTXO à
dépenser, le premier est 0

1-9 octets (VarInt) Taille du script de
déverrouillage

Longueur du script de
déverrouillage en octets, (to
follow)

Variable Script de déverrouillage Un script qui remplit les
conditions du script de
verrouillage de lÕUTXO.

4 octets Numéro de séquence Fonctionnalité de remplacement
de transaction actuellement
désactivée, fixé à 0xFFFFFFFF

Table 2. La structure dÕune entrée de transaction de génération
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Taille Champ Description

32 octets Hash de transaction Tous les bits sont à zéro : pas
une référence de hash de
transaction

4 octets Index de sortie Tous les bits sont à 1 :
0xFFFFFFFF

1-9 octets (VarInt) Taille des données coinbase Longueur des données coinbase,
de 2 à 100 octets

Variable Données coinbase Données arbitraires utilisés
comme nonce supplémentaire et
balises de minage dans les blocs
v2, doit commencer avec la
hauteur de bloc

4 octets Numéro de séquence Fixé à 0xFFFFFFFF

Dans une transaction de génération, les deux premiers champs sont réglés à des valeurs qui ne
représentent pas une référence dÕUTXO. Au lieu dÕun "Hash de transaction", le premier champ est
rempli avec 32 octets tous mis à zéro. L' "Index de sortie" est rempli avec 4 octets tous fixés à 0xFF (255
en décimal). Le "Script de déverrouillage" est remplacé par les données coinbase, un champ arbitraire
de données utilisé par les mineurs.

Les données coinbase

Les transactions de génération ne disposent pas dÕun champ pour un script de déverrouillage (alias,
scriptSig). Au lieu de cela, ce champ est remplacé par les données coinbase, qui doivent être comprises
entre 2 et 100 octets. Sauf pour les quelques premiers octets, le reste des données coinbase peut être
utilisé par les mineurs de quelque façon quÕils veulent; ce sont des données arbitraires.

Dans le bloc de genèse, par exemple, Satoshi Nakamoto a ajouté le texte "The Times 03/Jan/2009
Chancellor on brink of second bailout for banks" (Le chancelier est sur le point de lancer un second
plan de sauvetage pour les banques) dans les données coinbase, en lÕutilisant comme une preuve de la
date et pour transmettre un message. Actuellement, les mineurs utilisent les données coinbase pour
inclure des valeurs de nonce supplémentaire et des chaînes de caractères identifiant la pool de minage,
comme nous le verrons dans les sections suivantes.

Les quelques premiers octets de la coinbase étaient habituellement arbitraires, mais ce nÕest plus le
cas. Conformément à la Proposition dÕAmélioration de Bitcoin 34 (BIP0034), les blocs de version 2
(blocs avec le champ de version réglé à 2) doivent contenir lÕindice de la hauteur du bloc comme un
script dÕopération "push" au début du champ coinbase.

Dans le bloc 277 316, nous voyons que le coinbase (voir Transaction de production), qui est dans le
"Script de déverrouillage" ou champ scriptSig de lÕentrée de la transaction, contient la valeur
hexadécimal 03443b0403858402062f503253482f. Décodons cette valeur.
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Le premier octet, 03, demande au moteur dÕexécution de script de pousser les trois prochains octets sur
la pile de script (voir [tx_script_ops_table_pushdata]). Les trois prochains octets, 0x443b04, sont la
hauteur de bloc encodée en format little-endian (en arrière, lÕoctet le moins significatif en premier).
Inversez lÕordre des octets et le résultat est 0x043b44, qui correspond à 277 316 en décimal.

Les chiffres hexadécimaux suivants (03858402062) sont utilisés pour encoder un nonce supplémentaire
(voir La solution du nonce supplémentaire), soit une valeur aléatoire, utilisé pour trouver une solution
à la preuve de travail appropriée.

La dernière partie des données coinbase (2f503253482f) est la chaîne de caractères ASCII /P2SH/, ce qui
indique que le noeud de minage qui mine ce bloc supporte lÕamélioration pay-to-script-hash (P2SH)
définie dans le BIP0016. LÕintroduction de la fonction P2SH a requis un Ç vote È de la part des mineurs
afin dÕapprouver soit BIP0016 ou BIP0017. Ceux approuvant la mise en Ïuvre de BIP0016 devait
inclure /P2SH/ dans leurs données coinbase. Ceux approuvant lÕimplémentation de P2SH par le
BIP0017 devait inclure la chaîne p2sh/CHV dans leurs données coinbase. Le BIP0016 a été élu comme le
vainqueur, et de nombreux mineurs continuent dÕinclure la chaîne /P2SH/ dans leur coinbase pour
indiquer le support de cette fonctionnalité.

Extraire les données coinbase du bloc de genèse utilise la bibliothèque libbitcoin présentée dans
[alt_libraries] pour extraire les données coinbase du bloc de genèse, affichant le message de Satoshi.
Notez que la bibliothèque libbitcoin contient une copie statique du bloc de genèse, de sorte que
lÕexemple de code peut récupérer le bloc de genèse directement à partir de la bibliothèque.
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Example 6. Extraire les données coinbase du bloc de genèse

/*
Ê Display the genesis block message by Satoshi.
*/
#include <iostream>
#include <bitcoin/bitcoin.hpp>

int main()
{
Ê   // Create genesis block.
Ê   bc::block_type block = bc::genesis_block();
Ê   // Genesis block contains a single coinbase transaction.
Ê   assert(block.transactions.size() == 1);
Ê   // Get first transaction in block (coinbase).
Ê   const bc::transaction_type& coinbase_tx = block.transactions[0];
Ê   // Coinbase tx has a single input.
Ê   assert(coinbase_tx.inputs.size() == 1);
Ê   const bc::transaction_input_type& coinbase_input = coinbase_tx.inputs[0];
Ê   // Convert the input script to its raw format.
Ê   const bc::data_chunk& raw_message = save_script(coinbase_input.script);
Ê   // Convert this to an std::string.
Ê   std::string message;
Ê   message.resize(raw_message.size());
Ê   std::copy(raw_message.begin(), raw_message.end(), message.begin());
Ê   // Display the genesis block message.
Ê   std::cout << message << std::endl;
Ê   return 0;
}

Nous compilons le code avec le compilateur GNU C++ et lançons lÕexécutable produit, comme indiqué
dans Compiler et exécuter lÕexemple de code "satoshi-words".

Example 7. Compiler et exécuter lÕexemple de code "satoshi-words"

$ # Compile the code
$  g++ -o satoshi-words satoshi-words.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Run the executable
$ ./satoshi-words
^D!!<GS>^A^DEThe Times 03/Jan/2009 Chancellor on brink of second bailout for banks
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Construire lÕentête de bloc
Pour construire lÕentête de bloc, le noeud de minage doit remplir six champs, comme indiqué dans La
structure de lÕentête de bloc.

Table 3. La structure de lÕentête de bloc

Taille Champ Description

4 octets Version Un numéro de version pour
suivre les mises à jour
logicielles/de protocole

32 octets Hash du bloc précédent Une référence au hachage du
précédent (parent) bloc dans la
chaîne

32 octets Merkle Root Un hachage de la racine de
lÕarbre de Merkle des
transactions de ce bloc

4 octets Timestamp Le temps de création
approximative de ce bloc
(secondes depuis le début de
lÕEre Unix (Unix Epoch) )

4 octets Le niveau de difficulté Le niveau de difficulté de
lÕalgorithme proof-of-work pour
ce bloc

4 octets Nonce Un compteur utilisé pour
lÕalgorithme proof-of-work

Au moment où le bloc 277 316 fut miné, le numéro de version décrivant la structure du bloc est la
version 2, qui est codée au format little-endian sur 4 octets tel que +0x02000000 +.

Ensuite, le nÏud de minage doit ajouter le "Hash du bloc précédent". Tel est le hash de lÕentête du bloc
277 315, le bloc précédent reçu du réseau, que le nÏud de Jing a accepté et choisi comme le parent du
bloc candidat 277 316. Le hash de lÕentête de bloc pour le bloc 277 315 est :

0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569

La prochaine étape est de résumer toutes les transactions avec un arbre de Merkle, afin dÕajouter la
racine de Merkle à lÕentête du bloc. La transaction de génération est répertoriée comme la première
transaction dans le bloc. Puis, plus de 418 transactions sont ajoutées, pour un total de 419 transactions
dans le bloc. Comme nous lÕavons vu dans le [merkle_trees], il doit y avoir un nombre pair de nÏuds Ç
feuilles È dans lÕarbre, cÕest pourquoi la dernière transaction est dupliquée, créant 420 noeuds, chacun
contenant le hachage dÕune transaction. Les hachages de transaction sont ensuite combinés, par paires,
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créant chaque niveau de lÕarbre, jusquÕà ce que toutes les transactions soient résumées dans un seul
nÏud à la "racine" de lÕarbre. La racine de lÕarbre de Merkle résume toutes les transactions en une
valeur unique de 32 octets, que vous pouvez voir répertorié comme "racine de Merkle" dans Bloc 277
316, et ici :

c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51eb4cc7cf2e

Le noeud de minage va ensuite ajouter un horodatage de 4 octets, codé comme un timestamp Unix
"Epoch", qui est basée sur le nombre de secondes écoulées à partir du 1er Janvier 1970, à minuit heure
UTC/GMT. Le temps 1388185914 est égal à vendredi 27 décembre 2013, 23:11:54 UTC/GMT.

Le noeud remplit alors le niveau de difficulté, qui définit la difficulté requise de la preuve de travail
pour en faire un bloc valide. La difficulté est stockée dans le bloc en tant que "bits de difficulté", qui est
un encodage de mantisse-exposant du niveau. LÕencodage a un exposant de 1 octet, suivi par une
mantisse de 3 octets (coefficient). Dans le bloc 277 316, par exemple, la valeur de la difficulté en bits est
0x1903a30c. La première partie 0x19 est un exposant hexadécimal, tandis que la partie suivante,
0x03a30c, est le coefficient. Le concept dÕun niveau de difficulté est expliqué dans Cible de difficulté et
de reciblage et la représentation des "bits de difficulté" est expliquée dans Représentation de la
difficulté.

Le champ final est le nonce, qui est initialisée à zéro.

Avec tous les autres champs remplis, lÕentête de bloc est maintenant terminé et le processus de minage
peut commencer. LÕobjectif est maintenant de trouver une valeur pour le nonce qui se traduit par un
hachage dÕentête de bloc qui soit inférieur au niveau de difficulté. Le noeud de minage aura besoin de
tester des milliards ou des trillions de valeurs de nonce avant quÕun nonce soit trouvé qui satisfasse les
conditions requises.

Miner le bloc
Maintenant quÕun bloc candidat a été construit par le nÏud de Jing, il est temps pour la plate-forme de
minage de Jing de Ç miner È le bloc, de trouver une solution à lÕalgorithme proof-of-work qui rend le
bloc valide. Tout au long de ce livre, nous avons étudié les fonctions de hachage cryptographique
utilisées dans divers éléments du système bitcoin. La fonction de hachage SHA256 est la fonction
utilisée dans le processus de minage du bitcoin.

En termes simples, le minage est un processus, répété à reprises, de hachage de lÕentête de bloc, en
changeant un paramètre jusquÕà ce que le hachage résultant corresponde à une cible spécifique. Le
résultat de la fonction de hachage ne peut être déterminé à lÕavance, ni ne peut être créé un motif qui
va produire une valeur spécifique de hachage. Cette fonctionnalité de fonctions de hachage signifie
que la seule façon de produire un résultat de hachage correspondant à une cible spécifique est
dÕessayer encore et encore, en modifiant de manière aléatoire lÕentrée jusquÕà ce que le résultat de
hachage souhaité apparaisse par hasard.
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LÕalgorithme proof-of-work

Un algorithme de hachage prend une entrée de données de longueur arbitraire et produit un résultat
déterministe de longueur fixe, une empreinte numérique de lÕentrée. Pour toute entrée spécifique, le
hachage sera toujours le même et peut facilement être calculé et vérifié par quiconque mettant en
Ïuvre le même algorithme de hachage. La caractéristique clé dÕun algorithme de hachage
cryptographique est quÕil est pratiquement impossible de trouver deux entrées différentes qui
produisent la même empreinte digitale. En corollaire, il est également pratiquement impossible de
sélectionner une entrée de manière à produire une empreinte souhaitée, autrement quÕen testant des
entrées au hasard.

Avec SHA256, la sortie est toujours de 256 bits de long, quelle que soit la taille de lÕentrée. Dans
Exemple de SHA256, nous allons utiliser lÕinterpréteur Python pour calculer le hachage SHA256 de la
phrase, "I am Satoshi Nakamoto".

Example 8. Exemple de SHA256

$ python

Python 2.7.1
>>> import hashlib
>>> print hashlib.sha256("I am Satoshi Nakamoto").hexdigest()
5d7c7ba21cbbcd75d14800b100252d5b428e5b1213d27c385bc141ca6b47989e

Exemple de SHA256 représente le résultat du calcul du hachage de "I am Satoshi Nakamoto" :
5d7c7ba21cbbcd75d14800b100252d5b428e5b1213d27c385bc141ca6b47989e. Ce nombre de 256 bits est
le hachage ou résumé de la phrase et dépend de chaque partie de la phrase. LÕajout dÕune seule lettre,
un signe de ponctuation ou tout autre caractère va produire un hachage différent.

Maintenant, si nous changeons la phrase, nous devrions nous attendre à voir des hachages
complètement différents. Essayons cela en ajoutant un numéro à la fin de notre phrase, en utilisant le
script Python simple dans SHA256 Un script pour générer de nombreux hachages en itérant sur un
nonce.
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Example 9. SHA256 Un script pour générer de nombreux hachages en itérant sur un nonce

# example of iterating a nonce in a hashing algorithm's input

import hashlib

text = "I am Satoshi Nakamoto"

# iterate nonce from 0 to 19
for nonce in xrange(20):

Ê   # add the nonce to the end of the text
Ê   input = text + str(nonce)

Ê   # calculate the SHA-256 hash of the input (text+nonce)
Ê   hash = hashlib.sha256(input).hexdigest()

Ê   # show the input and hash result
Ê   print input, '=>',  hash

Exécuter cela va produire les hachages de plusieurs phrases, fait différemment en ajoutant un numéro
à la fin du texte. En incrémentant le nombre, nous pouvons obtenir différents hachages, comme
indiqué dans Sortie SHA256 dÕun script pour générer de nombreux hachages en itérant sur un nonce.
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Example 10. Sortie SHA256 dÕun script pour générer de nombreux hachages en itérant sur un nonce

$ python hash_example.py

I am Satoshi Nakamoto0 => a80a81401765c8eddee25df36728d732...
I am Satoshi Nakamoto1 => f7bc9a6304a4647bb41241a677b5345f...
I am Satoshi Nakamoto2 => ea758a8134b115298a1583ffb80ae629...
I am Satoshi Nakamoto3 => bfa9779618ff072c903d773de30c99bd...
I am Satoshi Nakamoto4 => bce8564de9a83c18c31944a66bde992f...
I am Satoshi Nakamoto5 => eb362c3cf3479be0a97a20163589038e...
I am Satoshi Nakamoto6 => 4a2fd48e3be420d0d28e202360cfbaba...
I am Satoshi Nakamoto7 => 790b5a1349a5f2b909bf74d0d166b17a...
I am Satoshi Nakamoto8 => 702c45e5b15aa54b625d68dd947f1597...
I am Satoshi Nakamoto9 => 7007cf7dd40f5e933cd89fff5b791ff0...
I am Satoshi Nakamoto10 => c2f38c81992f4614206a21537bd634a...
I am Satoshi Nakamoto11 => 7045da6ed8a914690f087690e1e8d66...
I am Satoshi Nakamoto12 => 60f01db30c1a0d4cbce2b4b22e88b9b...
I am Satoshi Nakamoto13 => 0ebc56d59a34f5082aaef3d66b37a66...
I am Satoshi Nakamoto14 => 27ead1ca85da66981fd9da01a8c6816...
I am Satoshi Nakamoto15 => 394809fb809c5f83ce97ab554a2812c...
I am Satoshi Nakamoto16 => 8fa4992219df33f50834465d3047429...
I am Satoshi Nakamoto17 => dca9b8b4f8d8e1521fa4eaa46f4f0cd...
I am Satoshi Nakamoto18 => 9989a401b2a3a318b01e9ca9a22b0f3...
I am Satoshi Nakamoto19 => cda56022ecb5b67b2bc93a2d764e75f...

Chaque phrase produit un résultat de hachage complètement différent. Ils semblent complètement
aléatoire, mais vous pouvez reproduire les résultats de cet exemple sur nÕimporte quel ordinateur avec
Python et voir exactement les mêmes hachages.

Le nombre utilisé en tant que variable dans un tel scénario est appelé un nonce. Le nonce est utilisé
pour faire varier la sortie dÕune fonction cryptographique, dans ce cas faire varier lÕempreinte digitale
SHA256 de la phrase.

Pour défier cet algorithme, nous allons fixer un objectif arbitraire : trouver une phrase qui produit un
hachage hexadécimal qui commence par un zéro. Heureusement, ce ne est pas difficile! Sortie SHA256
dÕun script pour générer de nombreux hachages en itérant sur un nonce montre que la phrase "I am
Satoshi Nakamoto13" produit le hachage
0ebc56d59a34f5082aaef3d66b37a661696c2b618e62432727216ba9531041a5, ce qui correspond à nos
critères. Il a fallu 13 tentatives pour le trouver. En termes de probabilités, si la sortie de la fonction de
hachage est répartie uniformément nous nous attendons à trouver un résultat avec un 0 comme
préfixe hexadécimal une fois tous les 16 hash (lÕun des 16 chiffres hexadécimaux Ð de 0 à F). En termes
numériques, cela signifie trouver une valeur de hachage qui est inférieure à
0x1000000000000000000000000000000000000000000000000000000000000000. Nous appelons ce seuil
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la cible et le but est de trouver un hachage qui soit numériquement moins que la cible. Si on diminue la
cible, trouver un hachage qui lui est inférieure devient de plus en plus difficile.

Pour donner une analogie simple, imaginez un jeu où les joueurs jettent une paire de dés à plusieurs
reprises, en essayant de faire moins quÕune cible spécifiée. Au premier tour, la cible est de 12. Sauf si
vous jetez un double-six, vous gagnez. Au prochain tour, la cible est 11. Les joueurs doivent jeter 10 ou
moins pour gagner, à nouveau une tâche facile. Disons que quelques tours plus tard la cible est
abaissée à 5. Maintenant, plus de la moitié des lancés seront supérieurs à 5 et donc invalide. De façon
exponentielle plus la cible baisse et plus de lancés de dés seront nécessaires pour gagner. Finalement,
lorsque la cible est de 2 (le minimum possible), un seul lancé tous les 36, ou 2% dÕentre eux, produira
un résultat gagnant.

Dans Sortie SHA256 dÕun script pour générer de nombreux hachages en itérant sur un nonce, le
"nonce" gagnant est 13 et ce résultat peut être confirmé par nÕimporte qui indépendamment. Tout le
monde peut ajouter le numéro 13 comme suffixe à la phrase Ç I am Satoshi Nakamoto È et calculer le
hachage, vérifiant quÕil est inférieure à la cible. Le résultat positif correspond aussi à la preuve de
travail, car il prouve que nous avons fait le travail pour trouver ce nonce. Alors quÕil suffit dÕun calcul
de hachage pour le vérifier, il nous a fallu 13 calculs de hachage pour trouver un nonce qui a
fonctionné. Si nous avions une cible inférieure (plus grande difficulté), il faudrait beaucoup plus de
calculs de hachage pour trouver un nonce approprié, mais seulement un calcul de hachage pour
quiconque veut le vérifier. En outre, en connaissant la cible, tout le monde peut estimer la difficulté en
utilisant des statistiques et donc savoir combien de travail a été nécessaire pour trouver un tel nonce.

La preuve de travail bitcoin est très similaire au défi représenté dans Sortie SHA256 dÕun script pour
générer de nombreux hachages en itérant sur un nonce. Le mineur construit un bloc candidat rempli
de transactions. Ensuite, le mineur calcule le hash de lÕentête de ce bloc et voit si elle est inférieure à la
cible actuelle. Si le hash nÕest pas inférieur à la cible, le mineur modifiera le nonce (habituellement
juste en incrémentant de un) et essayer à nouveau. Ë la difficulté actuelle dans le réseau bitcoin, les
mineurs doivent essayer des quadrillions de fois avant de trouver un nonce qui résulte en un assez
faible hash dÕentête de bloc.

Un algorithme proof-of-work très simplifiée est mis en Ïuvre en Python dans Implémentation
simplifiée de proof-of-work.

Example 11. Implémentation simplifiée de proof-of-work

#!/usr/bin/env python
# example of proof-of-work algorithm

import hashlib
import time

max_nonce = 2 ** 32 # 4 billion

def proof_of_work(header, difficulty_bits):
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Ê   # calculate the difficulty target
Ê   target = 2 ** (256-difficulty_bits)

Ê   for nonce in xrange(max_nonce):
Ê       hash_result = hashlib.sha256(str(header)+str(nonce)).hexdigest()

Ê       # check if this is a valid result, below the target
Ê       if long(hash_result, 16) < target:
Ê           print "Success with nonce %d" % nonce
Ê           print "Hash is %s" % hash_result
Ê           return (hash_result,nonce)

Ê   print "Failed after %d (max_nonce) tries" % nonce
Ê   return nonce

if __name__ == '__main__':

Ê   nonce = 0
Ê   hash_result = ''

Ê   # difficulty from 0 to 31 bits
Ê   for difficulty_bits in xrange(32):

Ê       difficulty = 2 ** difficulty_bits
Ê       print "Difficulty: %ld (%d bits)" % (difficulty, difficulty_bits)

Ê       print "Starting search..."

Ê       # checkpoint the current time
Ê       start_time = time.time()

Ê       # make a new block which includes the hash from the previous block
Ê       # we fake a block of transactions - just a string
Ê       new_block = 'test block with transactions' + hash_result

Ê       # find a valid nonce for the new block
Ê       (hash_result, nonce) = proof_of_work(new_block, difficulty_bits)

Ê       # checkpoint how long it took to find a result
Ê       end_time = time.time()

Ê       elapsed_time = end_time - start_time
Ê       print "Elapsed Time: %.4f seconds" % elapsed_time

Ê       if elapsed_time > 0:

Ê           # estimate the hashes per second
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Ê           hash_power = float(long(nonce)/elapsed_time)
Ê           print "Hashing Power: %ld hashes per second" % hash_power

En exécutant ce code, vous pouvez régler la difficulté souhaitée (en bits, combien de bits en tête
doivent être à zéro) et voir combien de temps il faudra à votre ordinateur pour trouver une solution.
Dans Exécuter lÕexemple de la preuve de travail avec diverses difficultés, vous pouvez voir comment
cela fonctionne sur un ordinateur portable moyen.

Example 12. Exécuter lÕexemple de la preuve de travail avec diverses difficultés

$ python proof-of-work-example.py*

Difficulty: 1 (0 bits)

[...]

Difficulty: 8 (3 bits)
Starting search...
Success with nonce 9
Hash is 1c1c105e65b47142f028a8f93ddf3dabb9260491bc64474738133ce5256cb3c1
Elapsed Time: 0.0004 seconds
Hashing Power: 25065 hashes per second
Difficulty: 16 (4 bits)
Starting search...
Success with nonce 25
Hash is 0f7becfd3bcd1a82e06663c97176add89e7cae0268de46f94e7e11bc3863e148
Elapsed Time: 0.0005 seconds
Hashing Power: 52507 hashes per second
Difficulty: 32 (5 bits)
Starting search...
Success with nonce 36
Hash is 029ae6e5004302a120630adcbb808452346ab1cf0b94c5189ba8bac1d47e7903
Elapsed Time: 0.0006 seconds
Hashing Power: 58164 hashes per second

[...]

Difficulty: 4194304 (22 bits)
Starting search...
Success with nonce 1759164
Hash is 0000008bb8f0e731f0496b8e530da984e85fb3cd2bd81882fe8ba3610b6cefc3
Elapsed Time: 13.3201 seconds
Hashing Power: 132068 hashes per second
Difficulty: 8388608 (23 bits)
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Starting search...
Success with nonce 14214729
Hash is 000001408cf12dbd20fcba6372a223e098d58786c6ff93488a9f74f5df4df0a3
Elapsed Time: 110.1507 seconds
Hashing Power: 129048 hashes per second
Difficulty: 16777216 (24 bits)
Starting search...
Success with nonce 24586379
Hash is 0000002c3d6b370fccd699708d1b7cb4a94388595171366b944d68b2acce8b95
Elapsed Time: 195.2991 seconds
Hashing Power: 125890 hashes per second

[...]

Difficulty: 67108864 (26 bits)
Starting search...
Success with nonce 84561291
Hash is 0000001f0ea21e676b6dde5ad429b9d131a9f2b000802ab2f169cbca22b1e21a
Elapsed Time: 665.0949 seconds
Hashing Power: 127141 hashes per second

Comme vous pouvez le voir, en augmentant la difficulté de 1 bit on provoque une augmentation
exponentielle dans le temps quÕil faut pour trouver une solution. Si vous pensez à lÕensemble de
lÕespace de nombre 256 bits, chaque fois que vous fixez un bit de plus à zéro, vous diminuez lÕespace de
recherche de moitié. Dans Exécuter lÕexemple de la preuve de travail avec diverses difficultés, il faut 84
millions de tentatives de hachage pour trouver un nonce qui produit un hachage avec les 26 premiers
bits à zéro. Même à une vitesse de plus de 120 000 hachages par seconde, il nécessite encore 10
minutes sur un ordinateur portable pour trouver cette solution.

Au moment de lÕécriture, le réseau tente de trouver un bloc dont le hash dÕentête est inférieure à
000000000000004c296e6376db3a241271f43fd3f5de7ba18986e517a243baa7. Comme vous pouvez le
voir, il y a beaucoup de zéros au début de ce hachage, ce qui signifie que la fourchette acceptable de
hachage est beaucoup plus petite, donc il est plus difficile de trouver un hash valide. Il faudra en
moyenne plus de 150 quadrillions de calculs de hachage par seconde pour le réseau pour découvrir le
prochain bloc. Cela semble être une tâche impossible, mais heureusement, le réseau apporte 100
petahashes par seconde (PH / sec) de puissance de calcul à supporter, lequel sera en mesure de trouver
un bloc en 10 minutes en moyenne.

Représentation de la difficulté

Dans Bloc 277 316, nous avons vu que le bloc contient la cible de difficulté, dans une notation appelé
"bits de difficulté" ou seulement "bits", qui dans le bloc 277 316 a la valeur de 0x1903a30c. Cette
notation exprime la cible de difficulté comme un format coefficient/exposant, avec les deux premiers
chiffres hexadécimaux pour lÕexposant et les six prochains chiffres hexadécimaux que le coefficient.
Dans ce bloc, par conséquent, lÕexposant est 0x19 et le coefficient est 0x03a30c.
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La formule pour calculer la cible de difficulté de cette représentation est :

cible = coefficient * 2^(8 * (exposant - 3))

En utilisant cette formule, et la valeur de bits de difficulté 0x1903a30c, nous obtenons :

cible = 0x03a30c * 2^(0x08 * (0x19 - 0x03))^

=> cible = 0x03a30c * 2^(0x08 * 0x16)^

=> cible = 0x03a30c * 2 ^0xB0^

qui en décimal est :

=> cible = 238 348 * 2 ^176^

=> cible = 22 829 202 948 393 929 850 749 706 076 701 368 331 072 452 018 388 575 715 328

reconverti en hexadécimal :

=> cible = 0x0000000000000003A30C00000000000000000000000000000000000000000000

Cela signifie quÕun bloc valide dÕune hauteur de 277 316 doit avoir un hash dÕentête de bloc inférieur à
la cible. En binaire ce nombre aurait plus des 60 premiers bits mis à zéro. Avec ce niveau de difficulté,
un seul mineur traitant 1 trillion de hashes par seconde (1 tera-hachage par seconde ou 1 TH/sec) ne
ferait que trouver une solution une fois tous les 8 496 blocs ou une fois tous les 59 jours, en moyenne.

Cible de difficulté et de reciblage

Comme nous lÕavons vu, la cible détermine la difficulté et par conséquent influe sur le temps
nécessaire pour trouver une solution à lÕalgorithme proof-of-work. Cela conduit à des questions
évidentes : Pourquoi est-ce que la difficulté est réglable, qui la règle et comment ?

Les blocs bitcoin sont générés toutes les 10 minutes, en moyenne. Ceci est le rythme cardiaque de
bitcoin et sous-tend la fréquence dÕémission de la monnaie et la vitesse de règlement de la transaction.
Cela doit rester constant et pas seulement à court terme, mais sur une période de plusieurs décennies.
Pendant cette période, il est prévu que la puissance des ordinateurs continue dÕaugmenter à un rythme
rapide. En outre, le nombre de participants au minage et les ordinateurs quÕils utilisent vont également
changer constamment. Pour garder le temps de génération de bloc à 10 minutes, la difficulté du
minage doit être ajustée pour tenir compte de ces changements. En fait, la difficulté est un paramètre
dynamique qui sera ajusté périodiquement pour atteindre une cible de bloc de 10 minutes. En termes
simples, la cible de difficulté est réglée de façon à ce que la puissance de minage entraîne un intervalle
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de bloc de 10 minutes.

Comment, alors, est un tel ajustement se fait dans un réseau totalement décentralisé ? Le reciblage de
la difficulté se produit automatiquement et sur chaque nÏud complet indépendamment. Tous les 2016
blocs, tous les nÏuds reciblent la difficulté de preuve de travail. LÕéquation pour le reciblage de la
difficulté mesure le temps quÕil a fallu pour trouver les 2016 derniers blocs et le compare au temps
estimé qui est de 20 160 minutes (deux semaines sur la base dÕun temps désiré de 10 minutes par bloc).
Le rapport entre le laps de temps réel et le laps de temps désiré est calculé et lÕajustement
correspondant de la difficulté (haut ou bas) est réalisé. En termes simples : si le réseau trouve des blocs
plus rapidement que toutes les 10 minutes, la difficulté augmente. Si la découverte de bloc est plus
lente que prévu, la difficulté diminue.

LÕéquation peut être résumée comme suit :

Nouvelle difficulté = Vieille difficulté * (Temps réel des derniers 2016 blocs / 20160
minutes)

Reciblage de la difficulté de la preuve de travail Ð GetNextWorkRequired() dans pow.cpp, ligne 43
montre le code utilisé dans le client Bitcoin Core.
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Example 13. Reciblage de la difficulté de la preuve de travail Ð GetNextWorkRequired() dans pow.cpp,
ligne 43

// Retour en arrière de l'équivalent de 14 jours de blocs
const CBlockIndex* pindexFirst = pindexLast;
for (int i = 0; pindexFirst && i < Params().Interval()-1; i++)
Ê   pindexFirst = pindexFirst->pprev;
assert(pindexFirst);

// Étape d'ajustement de limite
int64_t nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime();
LogPrintf("  nActualTimespan = %d  before bounds\n", nActualTimespan);
if (nActualTimespan < Params().TargetTimespan()/4)
Ê   nActualTimespan = Params().TargetTimespan()/4;
if (nActualTimespan > Params().TargetTimespan()*4)
Ê   nActualTimespan = Params().TargetTimespan()*4;

// Reciblage
uint256 bnNew;
uint256 bnOld;
bnNew.SetCompact(pindexLast->nBits);
bnOld = bnNew;
bnNew *= nActualTimespan;
bnNew /= Params().TargetTimespan();

if (bnNew > Params().ProofOfWorkLimit())
Ê   bnNew = Params().ProofOfWorkLimit();

NOTE

Alors que le calibrage de la difficulté se produit tous les 2016 blocs, en raison dÕune
erreur off-by-one dans le client Bitcoin Core le calibrage est basé sur la durée totale des
2015 blocs précédents (non 2016 comme il se doit), ce qui entraîne un biais de reciblage
vers une difficulté plus élevée de 0,05%.

Les paramètres Interval (2016 blocs) et TargetTimespan (deux semaines soit 1 209 600 de secondes)
sont définis dans chainparams.cpp.

Pour éviter une volatilité extrême dans la difficulté, lÕajustement de reciblage doit être inférieure à un
facteur de quatre (4) par cycle. Si le réglage de la difficulté requise est supérieure à un facteur de
quatre, il sera ajustée par le maximum et pas plus. Toute autre ajustement sera effectué dans la
prochaine période de reciblage car le déséquilibre persistera à travers les 2016 blocs suivants. Par
conséquent, de grandes différences entre le pouvoir de hachage et la difficulté pourraient prendre
plusieurs cycles de 2016 blocs pour sÕéquilibrer.
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TIP

La difficulté pour trouver un bloc bitcoin est dÕenviron "10 minutes de traitement" pour
lÕensemble du réseau, basé sur le temps quÕil a fallu pour trouver les 2016 blocs
précédents, ajusté tous les 2016 blocs.

Notez que la difficulté de la cible est indépendante du nombre de transactions ou la valeur des
transactions. Cela signifie que la quantité de puissance hachage et donc de lÕélectricité dépensée pour
sécuriser bitcoin est également tout à fait indépendante du nombre de transactions. LÕadoption du
bitcoin peut sÕintensifier et le système restera sécurisé sans aucune augmentation de la puissance de
hachage par rapport au niveau actuel. LÕaugmentation de la puissance de hachage dépend des forces
du marché tel que de nouveaux mineurs arrivent sur le marché pour rivaliser pour la récompense.
Tant quÕune puissance suffisante de hachage est sous le contrôle de mineurs agissant honnêtement à la
poursuite de la récompense, cela est suffisant pour empêcher les attaques "takeover" et, par
conséquent, suffisant pour sécurisé bitcoin.

La difficulté cible est étroitement liée au coût de lÕélectricité et au taux de change du bitcoin vers la
monnaie utilisée pour payer lÕélectricité. Les systèmes de minage haute performance sont aussi
efficace que possible avec la génération actuelle de fabrication de silicium, convertissant lÕélectricité
en calcul de hachage au taux le plus élevé possible. Le principal facteur dÕinfluence sur le marché du
minage est le prix dÕun kilowatt-heure en bitcoin, parce que ceci détermine la rentabilité du minage et
par conséquent les motivations à entrer ou sortir du marché du minage.

Miner le bloc avec succès
Comme nous lÕavons vu précédemment, le nÏud de Jing a construit un bloc candidat et lÕa préparé
pour le minage. Jing a plusieurs plateformes de minage avec des ASIC (circuits intégrés pour
application spécifique), où des centaines de milliers de circuits intégrés exécutent lÕalgorithme SHA256
en parallèle à des vitesses incroyables. Ces machines spécialisées sont connectés à son nÏud de minage
par USB. Ensuite, le nÏud de minage en cours dÕexécution sur lÕordinateur de Jing transmet lÕentête de
bloc à sa plateforme de minage, qui commence à tester des trillions de nonces par seconde.

Près de 11 minutes après avoir commencé à miner le bloc 277 316, lÕune des machines de minage
trouve une solution et lÕenvoie vers le nÏud de minage. LorsquÕelle est insérée dans lÕentête de bloc, le
nonce 4 215 469 401 produit un hachage de bloc de :

0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569

qui est inférieure à la cible :

0000000000000003A30C00000000000000000000000000000000000000000000

Immédiatement, le nÏud de minage de Jing transmet le bloc à tous ses pairs. Ils reçoivent, valident
puis propagent le nouveau bloc. Au fur et à mesure que le bloc navigue à travers le réseau, chaque
noeud lÕajoute à sa propre copie de la blockchain, étendant celle-ci à une hauteur de 277 316 blocs.
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Comme les nÏuds de minage reçoivent et valident le bloc, ils abandonnent leurs efforts pour trouver
un bloc à la même hauteur et commencent immédiatement à calculer le bloc suivant dans la chaîne.

Dans la section suivante, nous allons examiner le processus que chaque nÏud utilise pour valider un
bloc et sélectionner la chaîne la plus longue, créant le consensus qui forme la blockchain décentralisée.

Valider un nouveau bloc
La troisième étape dans le mécanisme de consensus de bitcoin est la validation indépendante de
chaque nouveau bloc par chaque nÏud du réseau. A mesure que les blocs nouvellement résolus sont
poussés à travers le réseau, chaque noeud effectue une série de tests pour le valider avant de le
propager à ses pairs. Cela garantit que seuls les blocs valides sont propagés sur le réseau. La validation
indépendante assure également que les mineurs qui agissent honnêtement voient leurs blocs
incorporés dans la blockchain, gagnant ainsi la récompense. Quant aux mineurs qui agissent
malhonnêtement, leurs blocs sont rejetés et ne perdent pas seulement la récompense, mais perdent
également lÕeffort déployé pour trouver une solution de preuve de travail, subissant ainsi sans
compensation le coût de lÕélectricité.

Quand un nÏud reçoit un nouveau bloc, il va valider le bloc en vérifiant une longue liste de critères
qui doivent tous être respectés; sinon, le bloc est rejetée. Ces critères peuvent être vus dans le client
Bitcoin Core dans les fonctions CheckBlock  et CheckBlockHeader et comprennent :

¥ La structure de données du bloc est syntaxiquement valide

¥ Le hash dÕentête de bloc est inférieure à la difficulté cible (met en Ïuvre la preuve de travail)

¥ Le timestamp du bloc est de moins de deux heures dans le future (permettant des erreurs de
temps)

¥ La taille du bloc est dans des limites acceptables

¥ La première transaction (et seulement la première) est une transaction de génération coinbase

¥ Toutes les transactions dans le bloc sont valides, respectant les critères de validation de transaction
discutés dans Vérification indépendante des transactions

La validation indépendante de chaque nouveau bloc par chaque nÏud du réseau assure que les
mineurs ne peuvent tricher. Dans les sections précédentes nous avons vu comment les mineurs
arrivent à écrire une transaction qui leur accorde les nouveaux bitcoins créés au sein dÕun bloc, de
même que réclamer les frais de transaction. Pourquoi les mineurs nÕécrivent-ils pas pour eux-même
une transaction avec un millier de bitcoin au lieu de la bonne récompense ? Parce que chaque noeud
valide les blocs selon des règles communes. Une transaction coinbase invalide rendrait lÕensemble du
bloc invalide, ce qui se traduirait par le refus du bloc et, par conséquent, cette transaction ne serait
jamais incluse dans le registre. Les mineurs doivent construire un bloc parfait, sur la base de règles
communes que tous les nÏuds suivent, et le miner avec une solution à la preuve de travail correcte.
Pour ce faire, ils dépensent beaucoup dÕélectricité en minage, et si ils trichent, toute lÕélectricité et
lÕeffort est gaspillé. Ceci est la raison pour laquelle la validation indépendante est une composante clé
du consensus décentralisé.
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Assemblage et sélection des chaînes de blocs
La dernière étape dans le mécanisme de consensus décentralisé de bitcoin est lÕassemblage de blocs en
chaînes et la sélection de la chaîne avec le plus de preuve de travail. Une fois quÕun nÏud a validé un
nouveau bloc, il tentera alors de former une chaîne en reliant le bloc à la blockchain existante.

Les nÏuds maintiennent trois ensembles de blocs : ceux qui sont liés à la blockchain principale, ceux
qui forment les branches qui dérivent de la blockchain principale (secondary chains), et enfin les blocs
qui ne possèdent pas un parent connu dans les chaînes connues  (orphans). Les blocs invalides sont
rejetés dès quÕun des critères de validation échoue et ne sont alors pas inclus dans une chaîne.

La "chaîne principale" est, à nÕimporte quel point dans le temps, la chaîne de blocs qui a le plus
difficulté cumulée. Dans la plupart des cas, cÕest également la chaîne avec le plus grand nombre de
bloc, sauf sÕil y a deux chaînes de longueur égale, auquel cas lÕune des deux aura davantage de preuve
de travail. La chaîne principale aura également des branches avec des blocs qui sont Ç frères et sÏurs È
aux blocs de la chaîne principale. Ces blocs sont valables, mais ne font pas partie de la chaîne
principale. Ils sont conservés pour consultation ultérieure, au cas où lÕune de ces chaînes est étendue
au point de dépasser en difficulté la chaîne principale. Dans la section suivante (Les forks de
blockchain), nous allons voir comment les chaînes secondaires surviennent suite à un minage presque
simultané de blocs de même hauteur.

Quand un nouveau bloc est reçu, un nÏud va essayer de lÕinsérer dans la blockchain existante. Le
nÏud regardera le champ "hash du bloc précédent" du bloc, qui est la référence au nouveau parent du
bloc. Ensuite, le nÏud va tenter de trouver ce parent dans la blockchain existante. La plupart du
temps, le parent sera le Ç sommet È de la chaîne principale, ce qui signifie que ce nouveau bloc étend la
chaîne principale. Par exemple, le nouveau bloc 277 316 a une référence au hash de son bloc parent
277 315. La plupart des nÏuds qui reçoivent 277 316 auront déjà le bloc 277 315 au sommet de leur
chaîne principale et va donc lier le nouveau bloc et étendre cette chaîne.

Parfois, comme nous allons le voir dans Les forks de blockchain, le nouveau bloc étend une chaîne qui
nÕest pas la chaîne principale. Dans ce cas, le nÏud va attacher le nouveau bloc à la chaîne secondaire
quÕil étend, puis comparer la difficulté de la chaîne secondaire à la chaîne principale. Si la chaîne
secondaire a davantage de difficulté cumulée que la chaîne principale, le noeud va reconverger sur la
chaîne secondaire, ce qui signifie quÕil va choisir la chaîne secondaire comme sa nouvelle chaîne
principale, faisant de la vieille chaîne principale une chaîne secondaire. Si le noeud est un mineur, il
va maintenant construire un bloc étendant cette nouvelle chaîne, plus longue.

Si un bloc valide est reçu et quÕaucun parent ne se trouve dans les chaînes existantes, ce bloc est
considéré comme un Ç orphelin È. Les blocs orphelins sont enregistrés dans la pool de bloc orphelin où
ils resteront jusquÕà ce que leur parent soit reçu. Une fois que le parent est reçu et lié aux chaînes
existantes, lÕorphelin peut être retiré de la pool dÕorphelins et lié au parent, lÕajoutant à la chaîne. Les
blocs orphelins se produisent généralement lorsque deux blocs qui ont été miné dans un court laps de
temps lÕun de lÕautre sont reçus dans lÕordre inverse (enfant avant parent).

En sélectionnant la chaîne de plus grande difficulté, tous les nÏuds finissent par parvenir à un
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consensus à lÕéchelle du réseau. Les écarts temporaires entre les chaînes sont résolus par la suite à
mesure que plus de preuve de travail est ajouté, étendant une des chaînes possibles. Les nÏuds de
minage "votent" avec leur puissance de minage en choisissant quelle chaîne étendre en minant le bloc
suivant. Quand ils extraient un nouveau bloc et étendent la chaîne, le nouveau bloc lui-même
représente leur vote.

Dans la section suivante, nous allons voir comment les divergences entre chaînes concurrentes (forks)
sont résolues par la sélection indépendante de la chaîne de difficulté la plus longue.

Les forks de blockchain

Parce que la blockchain est une structure de données décentralisée, différentes copies de celle-ci ne
sont pas toujours identiques. Les blocs peuvent arriver à différents noeuds à différents moments, ce
qui fait que les noeuds peuvent avoir une blockchain différente. Pour résoudre ce problème, chaque
noeud sélectionne et tente toujours dÕallonger la chaîne de blocs qui représente le plus de preuve de
travail, aussi connue comme la chaîne la plus longue ou la chaîne de plus grande difficulté cumulée. En
additionnant les difficultés enregistrées dans chaque bloc dÕune chaîne, un nÏud peut calculer le
montant total de la preuve du travail qui a été dépensé pour créer cette chaîne. Tant que tous les
nÏuds sélectionnent la plus longue chaîne de difficulté cumulée, le réseau mondiale bitcoin converge
vers un état cohérent. Les forks se produisent comme des incohérences temporaires entre les versions
de la blockchain, qui sont résolus par une reconvergence à mesure que dÕautres blocs sont ajoutés à
lÕun des forks.

Dans les prochains schémas, nous suivons la progression dÕun Ç fork È à travers le réseau. Le
diagramme est une représentation simplifiée de bitcoin en tant que réseau mondial. En réalité, la
topologie du réseau bitcoin nÕest pas organisé géographiquement. Au contraire, elle constitue un
réseau maillé de noeuds interconnectés, lesquels peuvent être situés très loin lÕune de lÕautre sur le
plan géographique. La représentation dÕune topologie géographique est une simplification utilisée afin
dÕillustrer un fork. Dans le réseau bitcoin réel, la Ç distance È entre les nÏuds est mesurée en Ç sauts È
de noeud en noeud, et non selon leur emplacement physique. Ë titre dÕillustration, les différents blocs
sont représentés avec des couleurs différentes, se diffusant sur le réseau et colorant les connexions
quÕils traversent.

Dans le premier schéma (Visualisation dÕun fork de blockchain Ð avant le fork), le réseau a une vue
unique de la blockchain, avec le bloc bleu comme étant le sommet de la chaîne principale.
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Figure 2. Visualisation dÕun fork de blockchain Ð avant le fork

Un Ç fork È se produit chaque fois quÕil y a deux blocs candidats en compétition pour former la plus
longue blockchain. Cela se produit dans des conditions normales à chaque fois que deux mineurs
résolvent lÕalgorithme proof-of-work dans un court laps de temps lÕun de lÕautre. Comme les deux
mineurs découvrent une solution pour leur bloc candidat respectif, ils ont immédiatement diffusé leur
propre bloc Ç gagnant È à leurs voisins immédiats qui commencent à propager le bloc à travers le
réseau. Chaque noeud qui reçoit un bloc valide lÕincorpore dans sa blockchain, étendant la blockchain
dÕun bloc. Si ce nÏud voit plus tard un autre bloc candidat étendant le même parent, il relie le
deuxième candidat sur une chaîne secondaire. En conséquence, certains noeuds vont Ç voir È un bloc
candidat en premier, tandis que dÕautres nÏuds verront un autre bloc candidat et deux versions
concurrentes de la blockchain vont émerger.

Dans Visualisation dÕun fork de blockchain : deux blocs trouvé simultanément, nous voyons deux
mineurs qui extraient deux blocs différents presque simultanément. Ces deux blocs sont des enfants
du bloc bleu, destiné à étendre la chaîne en se rajoutant sur le bloc bleu. Pour nous aider à le suivre,
lÕun est représenté par un bloc rouge provenant du Canada, lÕautre par un bloc vert provenant
dÕAustralie.

Supposons, par exemple, quÕun mineur au Canada trouve une solution de preuve de travail pour un
bloc "rouge" qui étend la blockchain, construisant par dessus le bloc parent "bleu". Presque
simultanément, un mineur australien qui était également en train dÕélargir le bloc "bleu" trouve une
solution pour le bloc "vert", son bloc candidat. Maintenant, il y a deux blocs possibles, celui que nous
appelons Ç rouge È, originaire du Canada, et celui que nous appelons Ç vert È, originaire dÕAustralie.
Les deux blocs sont valables, les deux blocs contiennent une solution valide à la preuve du travail, et
les deux blocs étendent le même parent. Les deux blocs contiennent probablement les mêmes
transactions pour la plupart, avec peut-être seulement quelques différences sur leur ordre.
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Figure 3. Visualisation dÕun fork de blockchain : deux blocs trouvé simultanément

Comme les deux blocs se propagent, certains nÏuds reçoivent le bloc "rouge" dÕabord et certains
reçoivent le bloc "vert" en premier. Comme le montre Visualisation dÕun fork de blockchain : deux
blocs se propagent, divisant le réseau, le réseau se divise en deux perspectives différentes de la
blockchain, lÕune avec un bloc rouge à son sommet, lÕautre avec un bloc vert.

Figure 4. Visualisation dÕun fork de blockchain : deux blocs se propagent, divisant le réseau

A partir de ce moment, les nÏuds du réseau bitcoin les plus proche (topologiquement, pas
géographiquement) du noeud canadien vont entendre parler bloc rouge dÕabord et vont créer une
nouvelle blockchain avec la plus grande difficulté cumulée avec le rouge comme le dernier bloc de la
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chaîne (par exemple, bleu-rouge), en ignorant le bloc candidat vert qui arrive un peu plus tard.
Pendant ce temps, les nÏuds plus proches du noeud australien prendront ce bloc comme le vainqueur
et prolongent la blockchain avec le vert comme le dernier bloc (par exemple, bleu-vert), en ignorant
rouge qui arrive quelques secondes plus tard. Tous les mineurs qui ont vu le rouge en premier vont
immédiatement construire des blocs candidats qui référence le rouge comme parent et commencent à
essayer de résoudre la preuve de travail pour ces blocs candidats. Les mineurs qui ont accepté le vert à
la place vont commencer à construire au-dessus du vert et étendre cette chaîne.

Les forks sont presque toujours résolus en un seul bloc. Quand une partie de la puissance de hachage
du réseau est dédiée à construire au dessus du rouge comme parent, une autre partie de la puissance
de hachage est concentrée à bâtir au dessus du vert. Même si la puissance de hachage est presque
également divisée, il est probable quÕun ensemble de mineurs trouve une solution et la propage avant
que lÕautre ensemble nÕaient trouvé une quelconque solution. Disons, par exemple, que les mineurs
construisant au-dessus du vert trouvent un nouveau bloc rose qui étend la chaîne (par exemple, bleu-
vert-rose). Ils propagent immédiatement ce nouveau bloc et lÕensemble du réseau le voit comme une
solution valide comme indiqué dans Visualisation dÕun fork de blockchain : un nouveau bloc étend un
fork.

Figure 5. Visualisation dÕun fork de blockchain : un nouveau bloc étend un fork

Tous les nÏuds qui avaient choisi le vert comme le gagnant au tour précédent étendront simplement la
chaîne dÕun autre bloc. Les nÏuds qui ont choisi le rouge comme le vainqueur, cependant, voient
maintenant deux chaînes : bleu-vert-rose et bleu-rouge. La chaîne bleu-vert-rose est maintenant plus
longue (plus de difficulté cumulée) que la chaîne bleu-rouge. En conséquence, ces nÏuds vont établir
la chaîne bleu-vert-rose comme chaîne principale et changer la chaîne bleu-rouge en chaîne
secondaire, comme indiqué dans Visualisation dÕun fork de blockchain : le réseau reconverge sur une
nouvelle plus longue chaîne. Ceci est une reconvergence de chaîne, parce que ces nÏuds sont obligés
de réviser leur vue de la blockchain pour incorporer la nouvelle preuve dÕune chaîne plus longue. Tous
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les mineurs qui travaillent sur lÕextension de la chaîne bleu-rouge va maintenant arrêter ce travail
parce que leur bloc candidat est un Ç orphelin È, comme son parent "rouge" nÕest plus sur la plus
longue chaîne. Les transactions au sein du rouge sont à nouveau remis dans la file dÕattente pour être
traiter dans le bloc suivant, parce que ce bloc nÕest plus dans la chaîne principale. Le réseau entier re-
converge sur une seule blockchain bleu-vert-rose, avec le rose comme dernier bloc de la chaîne. Tous
les mineurs commencent immédiatement à travailler sur des blocs candidats qui font référence au
rose comme leur parent pour allonger la chaîne bleu-vert-rose.

Figure 6. Visualisation dÕun fork de blockchain : le réseau reconverge sur une nouvelle plus longue chaîne

Il est théoriquement possible pour un fork de sÕétendre sur deux blocs, si deux blocs sont trouvés
presque simultanément par les mineurs sur les "côtés" opposés dÕun fork précédent. Cependant, la
chance que cela se produise est très faible. Alors quÕun fork dÕun bloc peut se produire chaque
semaine, un fork à deux blocs est extrêmement rare.

LÕintervalle de bloc de bitcoin de 10 minutes est un compromis entre des temps de confirmation
rapides (de règlement des transactions) et la probabilité dÕun fork. Un temps de bloc plus rapide
rendrait la confirmation des transactions plus rapide, mais conduirait à des forks de blockchain plus
fréquents, alors quÕun temps de bloc plus lent diminuerait le nombre de forks mais rendrait la
confirmation plus lente.

Le minage et la course au hachage
Le minage de bitcoin est une industrie extrêmement compétitive. La puissance de hachage a augmenté
de façon exponentielle dÕannée en année depuis lÕexistence de bitcoin. Certaines années la croissance a
été le reflet dÕun changement de technologie, comme en 2010 et 2011 où de nombreux mineurs sont
passés du minage à CPU  au minage à GPU et  au "field programmable gate array" (FPGA). En 2013,
lÕintroduction du minage à ASIC à conduit à un autre bond de géant dans la puissance de minage, en
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plaçant la fonction SHA256 directement dans des puces de silicium spécialement conçues pour le
minage. Les premières puces de la sorte pourraient fournir plus de puissance de minage que le réseau
bitcoin dans son ensemble en 2010.

La liste suivante montre la puissance totale de hachage du réseau bitcoin, au cours des cinq premières
années de fonctionnement :

2009

0.5 MH/secÐ8 MH/sec (16&#x00D7; growth)

2010

8 MH/secÐ116 GH/sec (14,500&#x00D7; growth)

2011

16 GH/secÐ9 TH/sec (562&#x00D7; growth)

2012

9 TH/secÐ23 TH/sec (2.5&#x00D7; growth)

2013

23 TH/secÐ10 PH/sec (450&#x00D7; growth)

2014

10 PH/secÐ150 PH/sec in August (15&#x00D7; growth)

Dans le tableau dans Puissance totale de hachage, gigahashes par seconde, sur deux ans, nous voyons
lÕaugmentation de la puissance de hachage du réseau bitcoin au cours des deux dernières années.
Comme vous pouvez le voir, la compétition entre les mineurs et la croissance de bitcoin a entraîné une
augmentation exponentielle de la puissance de hachage (hashs totaux par seconde à travers le réseau).

Figure 7. Puissance totale de hachage, gigahashes par seconde, sur deux ans
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Comme la quantité de puissance de hachage appliquée au minage de bitcoin a explosé, la difficulté a
augmenté en conséquence. LÕindicateur de difficulté dans le tableau Indicateur de la difficulté du
minage de bitcoin, sur deux ans est mesuré comme le rapport de difficulté actuel par rapport à la
difficulté minimum (la difficulté du premier bloc).

Figure 8. Indicateur de la difficulté du minage de bitcoin, sur deux ans

Au cours des deux dernières années, les puces ASIC de minage sont devenues de plus en plus denses,
approchant ce qui se fait de mieux en matière de puce en silicium avec une taille (résolution) de 22
nanomètres (nm). Actuellement, les fabricants dÕASIC visent à dépasser les fabricants de puces CPU à
usage général, dessinant des puces avec une taille de 16nm, car la rentabilité du minage fait évoluer
cette industrie encore plus vite que lÕinformatique en général. Il nÕy a plus de sauts de géant dans le
minage de bitcoin parce que lÕindustrie a atteint la pointe de la loi de Moore, qui stipule que la densité
de calcul va doubler tous les 18 mois environ. Pourtant, la puissance de minage du réseau continue de
progresser à un rythme exponentiel;  à la course aux puces de plus haute densité correspond  une
course pour des datacenters de densité plus élevée où des milliers de ces puces peuvent être déployées.
La question nÕest plus de savoir combien de minage peut être fait avec une puce, mais combien de
puces peuvent rentrer dans un bâtiment, tout en dissipant la chaleur et en fournissant une puissance
suffisante.

La solution du nonce supplémentaire

Depuis 2012, le minage de bitcoin a évolué pour résoudre une limitation fondamentale dans la
structure de lÕentête de bloc. Dans les premiers temps de bitcoin, un mineur pouvait trouver un bloc en
itérant le nonce jusquÕà ce que le hachage résultant soit en dessous de la cible. Comme la difficulté a
augmenté, les mineurs enchaînaient souvent toutes les 4 milliards de valeurs du nonce sans trouver un
bloc. Cependant, cela a été facilement résolu en mettant à jour le timestamp du bloc pour tenir compte
du temps écoulé. Parce que le timestamp est une partie de lÕentête, le changement permettrait aux
mineurs de parcourir les valeurs du nonce à nouveau avec des résultats différents. Une fois que le
matériel de minage dépassa 4 GH/sec, cependant, cette approche est devenue de plus en plus difficile
parce que les valeurs de nonce étaient épuisées en moins dÕune seconde. Comme lÕéquipement minier
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ASIC a commencé à se développer et à dépasser le TH/sec de taux de hachage, le logiciel de minage
avait besoin de plus dÕespace pour les valeurs de nonce afin de trouver des blocs valides. Le timestamp
pourrait être étiré un peu, mais le déplacer trop loin dans lÕavenir aurait pour conséquence de rendre
le bloc invalide. Une nouvelle source de Ç changement È était nécessaire dans lÕentête de bloc. La
solution fut dÕutiliser la transaction coinbase comme une source de valeurs de nonce supplémentaires.
Parce que le script coinbase peut stocker entre 2 et 100 octets de données, les mineurs ont commencé à
utiliser cet espace comme espace de nonce supplémentaire, leur permettant dÕexplorer un éventail
beaucoup plus large de valeurs dÕentête de bloc pour trouver des blocs valides. La transaction coinbase
est inclus dans lÕarbre de Merkle, ce qui signifie que tout changement dans le script coinbase provoque
une modification de la racine de Merkle. Huit octets de nonce supplémentaires, ainsi que les 4 octets de
nonce "standard" permettent aux mineurs dÕexplorer un total de 296 (8 suivi de 28 zéros) possibilités
par seconde sans avoir à modifier le timestamp. Si, à lÕavenir, les mineurs pouvaient parcourir toutes
ces possibilités, ils pourraient alors modifier le timestamp. Il y a aussi plus dÕespace dans le script
coinbase pour une future expansion de lÕespace de nonce supplémentaire.

Les pools de minage

Dans cet environnement hautement concurrentiel, les mineurs individuels travaillant seuls (également
connus comme "mineurs solo") nÕont aucune chance. Pour eux, la probabilité de trouver un bloc qui
compensera leurs coûts dÕélectricité et de matériel est si faible quÕelle représente un pari risqué,
comme jouer à la loterie. Même le plus rapide des systèmes de minage ASIC pour particulier ne peut
rivaliser avec les systèmes commerciaux qui empilent des dizaines de milliers de ces puces dans des
entrepôts géants près de centrales hydro-électriques. Les mineurs collaborent désormais pour former
des pools de minage, mettant en commun leur puissance de hachage et se partageant la récompense
entre des milliers de participants. En participant à un pool, les mineurs reçoivent une plus petite part
de la récompense globale, mais sont généralement récompensés chaque jour, réduisant lÕincertitude.

Prenons un exemple concret. Supposons quÕun mineur a acheté du matériel de minage avec un taux de
hachage total de 6000 gigahashes par seconde (GH/s), soit 6 TH/s. En Août 2014 cet équipement coûtait
environ 10 000 $. Le matériel consomme 3 kilowatts (kW) dÕélectricité lors de lÕexécution, 72 kW-
heures par jour, à un coût de 7 $ ou 8 $ par jour en moyenne. Avec la difficulté bitcoin en cours, le
mineur sera en mesure de miner en solo un bloc environ une fois tous les 155 jours, soit tous les 5
mois. Si le mineur trouve un seul bloc dans ce délai, le paiement de 25 bitcoins, à environ 600 $ par
bitcoin, se traduira en un seul versement de 15 000 dollars, qui couvrira la totalité du coût du matériel
et de lÕélectricité consommée au cours de cette période, laissant un bénéfice net dÕenviron 3000 $.
Cependant, les chances de trouver un bloc dans une période de cinq mois dépendent de la chance du
mineur. Il pourrait trouver deux blocs en cinq mois et faire un très grand profit. Ou il pourrait ne pas
trouver un bloc pendant 10 mois et subir une perte financière. Pire encore, la difficulté de lÕalgorithme
bitcoin proof-of-work est susceptible de monter de façon significative au cours de cette période, au
rythme actuel de la montée de la puissance de hachage, ce qui signifie que le mineur a, au plus, six
mois pour trouver un bloc avant que le matériel ne devienne obsolète et doive être remplacé par du
matériel de minage plus puissant. Si ce mineur participe à un pool de minage, au lieu dÕattendre une
fois tous les cinq mois une aubaine de 15 000 $, il sera en mesure de gagner environ 500 $ à 750 $ par
semaine. Les paiements réguliers dÕune pool de minage vont lÕaider à amortir le coût du matériel et de
lÕélectricité au fil du temps sans prendre un risque énorme. Le matériel sera toujours obsolète dans six

39



à neuf mois et le risque est encore élevé, mais le chiffre dÕaffaires sera au moins régulier et fiable au
cours de cette période.

Les pools de minage coordonnent plusieurs centaines ou milliers de mineurs, sur des protocoles
spécialisés de minage en pool. Les mineurs individuels configurent leurs équipements de minage pour
se connecter à un serveur de pool, après avoir créé un compte avec la pool. Leur matériel de minage
reste connecté au serveur de pool pendant le minage, synchronisant leur effort avec les autres
mineurs. Ainsi, les mineurs en pool se partagent lÕeffort du minage de bloc et se partage ensuite les
récompenses.

Les blocs gagnants paient la récompense à une adresse bitcoin de la pool, plutôt quÕaux mineurs
individuels. Le serveur de pool va périodiquement effectuer des paiements aux adresses bitcoin des
mineurs, une fois leur part des récompenses a atteint un certain seuil. Typiquement, le serveur de pool
exige un certain pourcentage des récompenses pour fournir le service de pool de minage.

Les mineurs participant à une pool se partagent le travail de recherche dÕune solution dÕun bloc
candidat, gagnant des Ç parts È pour leur contribution au minage. La pool de minage se fixe un objectif
de difficulté inférieure pour gagner une part, généralement plus de 1000 fois plus facile que la
difficulté du réseau bitcoin. Quand quelquÕun dans la pool a miné un bloc avec succès, la récompense
est gagnée par la pool et ensuite partagée avec tous les mineurs en proportion du nombre de parts
quÕils ont apporté à lÕeffort commun.

Les pools sont ouvertes à tout mineur, grand ou petit, professionnel ou amateur. Une pool aura par
conséquent des participants avec une seule petite machine de minage, et dÕautres avec un garage plein
de matériel haut de gamme. Certains vont miner avec quelques dizaines de kilowatts dÕélectricité,
dÕautres piloteront un datacenter consommant un mégawatt dÕélectricité. Comment une pool de
minage mesure les contributions individuelles, de manière à répartir équitablement les récompenses,
sans possibilité de tricherie ? La réponse est dÕutiliser lÕalgorithme proof-of-work, mais fixé à une
difficulté inférieure, de sorte que même les plus petits mineurs de la pool gagnent une part
suffisamment fréquemment pour quÕil continue de valoir la peine de contribuer à la pool. En fixant
une difficulté inférieure afin de gagner des parts, la pool mesure la quantité de travail effectuée par
chaque mineur. Chaque fois quÕun mineur de la pool trouve un hash dÕentête de bloc qui est inférieure
à la difficulté de la pool, il prouve quÕil a fait le travail de hachage pour trouver ce résultat. Plus
important encore, le travail pour trouver des parts contribue, dÕune manière statistiquement
mesurable, à lÕeffort global pour trouver un hachage inférieur à la cible du réseau bitcoin. Des milliers
de mineurs essayant de trouver des hashs de faible valeur finiront par en trouver un assez faible pour
satisfaire la cible du réseau bitcoin.

Revenons à lÕanalogie du jeu de dés. Si les joueurs de dés jettent les dés avec pour objectif de jeter un
résultat de moins de quatre (la difficulté globale du réseau), une pool fixerait une cible plus facile,
comptant combien de fois les joueurs de la pool ont réussi à jeter moins de huit. Lorsque les joueurs de
la pool jettent moins de huit (la cible de la pool), ils gagnent des parts, mais ils ne gagnent pas le jeu
parce quÕils ne réalisent pas la cible du jeu (moins de quatre). Les joueurs en pool vont atteindre la
cible plus facile de la pool beaucoup plus souvent, gagnant des parts très régulièrement, même
lorsquÕils ne réalisent pas lÕobjectif plus difficile de gagner le jeu. De temps à autre, lÕun des joueurs
jettera moins de quatre et la pool gagnera. Ensuite, les gains peuvent être distribués aux joueurs de la
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pool sur la base des parts quÕils ont gagnés. Même si la cible de huit ou moins ne gagnait pas, cÕest une
manière équitable de mesurer les dés jetés pour les joueurs, et il produit parfois un jet de moins de
quatre.

De même, une pool de minage fixera une difficulté de pool qui fera en sorte quÕun mineur de pool peut
assez souvent trouver un hash dÕentête de bloc qui soit moins que la difficulté de la pool, gagnant des
parts. De temps en temps, une de ces tentatives va produire un hash dÕentête de bloc qui est inférieure
à la cible du réseau bitcoin, ce qui en fait un bloc valide et lÕensemble de la pool gagne.

Les pools gérées

La plupart des pools de minage sont Ç gérées È, ce qui signifie quÕil y a une entreprise ou une personne
exécutant un serveur de pool. Le propriétaire du serveur est appelé opérateur de pool, il facture aux
mineurs en pool un pourcentage des gains.

Le serveur de pool fonctionne avec un logiciel spécialisé et un protocole de minage en pool qui
coordonne les activités des mineurs de la pool. Le serveur est également connecté à un ou plusieurs
nÏuds bitcoin complets et dispose dÕun accès direct à une copie complète de la base de données
blockchain. Cela lui permet de valider des blocs et des transactions au nom des mineurs de la pool, leur
évitant de devoir exécuter un noeud complet. Pour les mineurs en pool, cela est une considération
importante, car un noeud complet nécessite un ordinateur dédié avec au moins 15 à 20 Go de stockage
persistant (de disque dur) et au moins 2 Go de mémoire vive (RAM). En outre, le logiciel bitcoin
sÕexécutant sur un noeud complet doit être surveillé, entretenu et mis à jour fréquemment. Tous les
temps dÕarrêt causés par un manque dÕentretien ou par un manque de ressources affectera les revenus
du mineur. Pour de nombreux mineurs, la capacité à miner sans exécuter un noeud complet est un
autre des grands avantages de rejoindre une pool gérée.

Les mineurs en pool se connectent au serveur de la pool en utilisant un protocole de minage tels que
Stratum (STM) ou GetBlockTemplate (GBT). Une ancienne norme appelée GetWork (GWK) est
quasiment obsolète depuis fin 2012, car elle ne supporte pas facilement le minage à taux de hachage
dépassant les 4 GH/s. Tant les protocoles STM que GBT créent des  templates de bloc qui contiennent un
modèle dÕentête de bloc candidat. Le serveur de pool construit un bloc candidat en agrégeant les
transactions, en ajoutant une transaction coinbase (avec un espace de nonce en plus), le calcul de la
racine de Merkle, et un lien vers le hash du bloc précédent. LÕentête du bloc candidat est ensuite
envoyé à chacun des mineurs de la pool comme un modèle. Chaque mineur de la pool mine alors à
lÕaide du template de bloc, à une difficulté inférieure à la difficulté de réseau bitcoin, et envoie chaque
résultat positif au serveur de pool pour gagner des parts.

P2Pool

Les pools gérées créent une possibilité de tricherie de la part de lÕopérateur de pool, qui pourraient
diriger lÕeffort de la pool pour créer des transactions dépensées deux fois ou invalider des blocs ( voir
Les attaques par consensus). En outre, le modèle centralisé des serveurs de pool représente une
possibilité de faille concentrée sur un point unique. Si le serveur de pool est en panne ou est ralenti par
une attaque par déni de service, les mineurs en pool ne peuvent plus miner. En 2011, pour résoudre
ces problèmes de centralisation, une nouvelle méthode de minage en pool a été proposé et mis en
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Ïuvre : P2Pool est une pool de minage en peer-to-peer, sans opérateur central.

Une P2Pool fonctionne en décentralisant les fonctions du serveur de pool, mettant en Ïuvre un
système parallèle de blockchain appelé un share chain ou chaîne de parts. Une chaîne de parts est une
blockchain fonctionnant à une difficulté moindre que la blockchain bitcoin. La chaîne de parts permet
aux mineurs en pool de participer à une pool décentralisée, en minant des parts sur la chaîne de parts
au taux dÕun bloc de part toutes les 30 secondes. Chacun des blocs sur la chaîne de parts enregistre une
part de récompense proportionnée pour les mineurs en pool qui contribuent au travail, faisant
progresser les parts à partir du bloc de part précédent. Lorsque lÕun des blocs de part réalise
également la cible de difficulté du réseau bitcoin, il se propage et est inclus dans la blockchain bitcoin,
récompensant tous les mineurs de la pool qui ont contribué à toutes les parts qui ont précédé le bloc de
part gagnant. Essentiellement, au lieu dÕun serveur de pool qui garde trace des parts et des
récompenses des mineurs en pool, la chaîne de parts permet à tous les mineurs de la pool de garder
une trace de toutes les parts en utilisant un mécanisme de consensus décentralisé similaire au
mécanisme de consensus de la blockchain bitcoin.

Le minage en P2Pool est plus complexe que le minage en pool car il nécessite que les mineurs aient un
ordinateur dédié avec suffisamment dÕespace disque, de mémoire et de bande passante internet pour
soutenir un nÏud bitcoin complet ainsi que le logiciel destiné aux noeuds P2Pool. Les mineurs P2Pool
connectent leur matériel de minage à leur noeud P2Pool local, qui simule les fonctions dÕun serveur de
pool en envoyant les modèles de blocs au matériel de minage. En P2Pool, chaque mineur construit ses
propres blocs candidats, agrégeant les transactions à la manière des mineurs solo, mais mine sur la
chaîne de parts. Le P2Pool est une approche hybride qui a lÕavantage de permettre des paiements
beaucoup plus granulaire que le minage en solo, mais sans donner trop de contrôle à un opérateur de
pool comme dans les pool gérées.

Récemment, la participation en P2Pool a augmenté de façon significative étant donné que la
concentration du minage dans les pools de minage a atteint un niveau soulevant des inquiétudes quant
à une attaque 51% (voir Les attaques par consensus). Le développement du protocole P2Pool se
poursuit avec lÕespoir dÕéliminer la nécessité dÕexécuter un nÏud complet et donc faire que le minage
décentralisé soit encore plus facile à utiliser.

Même si le P2Pool réduit la concentration du pouvoir chez les opérateurs de pools, il reste vulnérable à
une attaque 51% contre la chaîne de parts elle-même. Une adoption plus large de P2Pool ne résout pas
le problème dÕattaque 51% pour bitcoin lui-même. Plutôt, le P2Pool fait de bitcoin un système plus
robuste dans lÕensemble, en tant que partie dÕun écosystème de minage riche.

Les attaques par consensus
Le mécanisme de consensus bitcoin est, au moins théoriquement, vulnérable aux attaques des mineurs
(ou des pools) qui tentent dÕutiliser leur puissance de hachage à des fins malhonnêtes ou destructrices.
Comme nous lÕavons vu, le mécanisme de consensus dépend de la présence dÕune majorité de mineurs
qui agissent honnêtement par intérêt personnel. Toutefois, si un mineur ou un groupe de mineurs
peuvent obtenir une part importante de la puissance de minage, ils peuvent attaquer le mécanisme de
consensus afin de perturber la sécurité et la disponibilité du réseau bitcoin.
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Il est important de noter que les attaques par consensus ne peuvent affecter quÕun consensus futur, ou,
au mieux, le passé le plus récent (quelques dizaines de blocs). Le registre bitcoin devient de plus en
plus immuable à mesure que le temps passe. Si, en théorie, un fork peut être réalisé à toute
profondeur, dans la pratique, la puissance de calcul nécessaire pour forcer un fork très profond est
immense, ce qui rend les anciens blocs pratiquement immuable. Aussi, les attaques par consensus
nÕaffecte pas la sécurité de la clé privée et lÕalgorithme de signature (ECDSA). Une attaque par
consensus ne peut pas voler des bitcoins, dépenser des bitcoins sans signatures, rediriger des bitcoins,
modifier des transactions passées ou des preuves de propriété. Les attaques par consensus ne peuvent
affecter que les blocs les plus récents et causer des perturbations par déni de service sur la création
des blocs à venir.

Un scénario dÕattaque contre le mécanisme de consensus est appelé "lÕattaque 51%". Dans ce scénario,
un groupe de mineurs, contrôlant la majorité (51%) de la puissance de hachage de lÕensemble du
réseau, sÕentendent pour attaquer bitcoin. Avec la possibilité de miner la majorité des blocs, les
mineurs attaquant peuvent provoquer des forks volontairement dans la blockchain, et dépenser des
transactions deux fois ou exécuter des attaques par déni de service contre des transactions ou des
adresses spécifiques. Une attaque fork/double-dépense est celle où lÕattaquant rend des blocs déjà
confirmés invalides en forkant en dessous dÕeux et en reconvergeant sur une chaîne alternative. Avec
une puissance suffisante, un attaquant peut invalider six blocs ou plus dÕaffilée, ayant pour
conséquence de rendre des transactions considérées comme immuables (six confirmations) invalides.
Notez quÕune double dépenses ne peut être fait que sur les transactions appartenant à lÕattaquant,
pour lesquelles lÕattaquant peut produire une signature valide. Faire des transactions de double
dépenses peut être rentable si en invalidant une transaction lÕattaquant peut obtenir un paiement non
réversible ou un produit sans avoir à payer pour cela.

Examinons un exemple pratique dÕattaque 51%. Dans le premier chapitre, nous avons vu une
transaction entre Alice et Bob pour une tasse de café. Bob, le propriétaire du café, est prêt à accepter le
paiement de tasses de café sans attendre la confirmation (le minage dans un bloc), parce que le risque
de double-dépense pour une tasse de café est faible en comparaison de la commodité dÕun service
clientèle rapide . Ceci est similaire à la pratique des magasins qui acceptent les paiements par carte de
crédit sans signature pour des montants inférieurs à 25 $, car le risque dÕun rejet de débit de carte de
crédit est faible alors que le coût de retardement de la transaction pour obtenir une signature est en
comparaison plus grande. En revanche, la vente dÕun article plus cher en bitcoins court le risque dÕune
attaque double-dépenses, où lÕacheteur diffuse une transaction concurrente qui envoie les mêmes
entrées (UTXO) et annule le paiement au marchand. Un attaque double-dépenses peut arriver de deux
façons : soit avant quÕune transaction soit confirmée, ou si lÕattaquant profite dÕun fork de blockchain
pour annuler plusieurs blocs. Une attaque 51% permet à des attaquants à dépenser deux fois leurs
propres transactions dans la nouvelle chaîne, annulant ainsi la transaction correspondante dans la
vieille chaîne.

Dans notre exemple, Mallory, un attaquant malveillant, va à la galerie de Carol et achète une belle
peinture en triptyque représentant Satoshi Nakamoto comme Prométhée. Carol vend les peintures
"The Great Fire" pour 250 000 dollars en bitcoins à Mallory. Au lieu dÕattendre six confirmations ou
plus sur la transaction, Carol enveloppe et donne les peintures à Mallory après une seule confirmation.
Mallory agit avec un complice, Paul, qui exploite une grande pool de minage, et le complice lance une
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attaque 51% dès que la transaction de Mallory est incluse dans un bloc. Paul administre la pool de
minage de manière à reminer un bloc de même hauteur que le bloc contenant la transaction de
Mallory, remplaçant le paiement de Mallory à Carol avec une transaction qui double dépense la même
entrée que le paiement de Mallory. La transaction double-dépenses consomme le même UTXO et paie
de nouveau au portefeuille de Mallory, au lieu de payer celui de Carol, permettant à Mallory de garder
les bitcoins. Paul dirige ensuite la pool de minage pour miner un bloc supplémentaire, afin de rendre
la chaîne contenant la transaction double-dépenses plus vielle que la chaîne originale (provoquant un
fork en dessous du bloc contenant la transaction de Mallory). Lorsque le fork de blockchain est résolu
en faveur de la nouvelle (plus longue) chaîne, la transaction double-dépenses remplace le paiement
initial à Carol. Carol perd alors les trois tableaux et nÕa pas non plus le paiement de bitcoins. Tout au
long de cette activité, les participants de la pool de minage de Paul pourraient rester parfaitement
ignorant de la tentative de double-dépenses, parce quÕils minent avec des mineurs automatisés et ne
peuvent pas surveiller chaque transaction ou bloc.

Pour se protéger contre ce type dÕattaque, un commerçant vendant des articles de grande valeur doit
attendre au moins six confirmations avant de donner le produit à lÕacheteur. Alternativement, le
commerçant doit utiliser un entiercement grâce à compte multi-signature, et toujours attendre
plusieurs confirmations après que le compte soit financé. Plus il y a de confirmations, plus il devient
difficile dÕinvalider une transaction avec une attaque 51%. Pour les articles de grande valeur, le
paiement par bitcoin sera toujours pratique et efficace même si lÕacheteur doit attendre 24 heures pour
la livraison, ce qui assurerait 144 confirmations.

En plus dÕune attaque double-dépenses, lÕautre scénario pour une attaque par consensus est de
provoquer un déni de service contre des participants du réseau bitcoin (adresses bitcoin spécifiques).
Un attaquant disposant dÕune majorité de la puissance de minage peut simplement ignorer des
transactions spécifiques. Si elles sont incluses dans un bloc miné par un autre mineur, lÕattaquant peut
délibérément forker et re-miner ce bloc, toujours en ignorant des transactions spécifiques. Ce type
dÕattaque peut entraîner un déni de service soutenu contre une adresse spécifique ou un ensemble
dÕadresses pour aussi longtemps que lÕattaquant contrôle la majorité de la puissance de minage.

En dépit de son nom, le cas dÕune attaque 51% ne nécessite pas réellement 51% de la puissance de
hachage. En fait, une telle attaque peut être tentée avec un pourcentage plus faible. Le seuil de 51% est
tout simplement le niveau auquel une telle attaque est presque assurée de réussir. Une attaque par
consensus est essentiellement un combat pour le prochain bloc et le groupe le "plus fort" est plus
susceptible de gagner. Avec moins de puissance de hachage, la probabilité de succès est réduite, parce
que dÕautres mineurs contrôlent la génération de certains blocs avec leur puissance de minage
"honnête". Une façon de voir les choses est que plus un attaquant a de puissance de hachage, plus le
fork quÕil peut créer sera long, plus les blocs récemment inclus pourront être invalider ou plus il peut
contrôler de blocs à venir. Des groupes de recherche en sécurité ont utilisé la modélisation statistique
pour prétendre que divers types dÕattaques consensuelles sont possibles avec aussi peu que 30% de la
puissance de hachage.

LÕaugmentation massive de la puissance totale de hachage a sans doute rendu bitcoin imperméable
aux attaques par un mineur unique. Il nÕy a aucune voie possible pour un mineur en solo de contrôler
plus quÕun petit pourcentage de la puissance totale de minage. Cependant, la centralisation du contrôle
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causée par les pools minières a introduit le risque dÕattaques à but lucratif par un opérateur de pool.
LÕopérateur de pool dans une pool gérée contrôle la construction de blocs candidats et contrôle les
transactions qui sont également incluses. Cela donne à lÕopérateur de la pool le pouvoir dÕexclure des
transactions ou dÕintroduire des transactions double-dépenses. Si un tel abus de pouvoir est fait de
manière limitée et subtile, un opérateur de pool pourrait éventuellement bénéficier dÕune attaque par
consensus sans être remarqué.

Tous les attaquants ne seront pas motivés par le profit cependant. Un scénario dÕattaque potentiel est
celui où un attaquant a lÕintention de perturber le réseau bitcoin sans la possibilité de profiter de cette
perturbation. Une attaque malveillante visant à paralyser bitcoin nécessiterait dÕénormes
investissements et une planification secrète, mais pourrait éventuellement être lancé par un très riche
attaquant, probablement financé par un Etat. Alternativement, un riche attaquant pourrait attaquer le
consensus bitcoin en amassant simultanément le matériel de minage, en compromettant les
opérateurs de pools et en attaquant dÕautres pools avec déni de service. Tous ces scénarios sont
théoriquement possible, mais de plus en plus impraticable à mesure que la puissance de hachage
globale du réseau bitcoin continue à croître de façon exponentielle.

Sans aucun doute, une attaque par consensus grave éroderait la confiance en bitcoin dans le court
terme, pouvant provoquer une baisse significative des prix. Cependant, le réseau et le logiciel bitcoin
sont en constante évolution, de sorte que les attaques par consensus seraient adressées avec des
contre-mesures immédiates par la communauté bitcoin, faisant de bitcoin un système plus robuste que
jamais.
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Chaînes alternatives, Monnaies, <phrase
role="keep-together"> et
Applications</phrase>
Bitcoin est le résultat de 20 années de recherche dans le domaine des systèmes distribués et des
monnaies, et a mis au jour une technologie révolutionnaire : un mécanisme de consensus décentralisé
fondé sur une preuve de travail. Cette invention au coeur de bitcoin a donné naissance à une vague
dÕinnovations dans la monnaie, les services financiers, les sciences économiques, les systèmes
distribués, les systèmes de vote, la gouvernance dÕentreprise, et la gestion des contrats.

Dans ce chapitre, nous allons examiner les nombreuses conséquences de lÕinvention du bitcoin et de la
blockchain : les chaînes alternatives, les monnaies, et des applications développées depuis lÕavènement
de cette technologie en 2009. Nous nous concentrerons essentiellement sur les monnaies alternatives,
ou altcoins, qui sont des monnaies numériques implémentées sur le même modèle que bitcoin, mais
avec une blockchain et un réseau totalement indépendant.

Pour chaque altcoin cité dans ce chapitre, 50 ou plus seront passés sous silence, suscitant colère et
fureur auprès de leurs créateurs et fans. Le but de ce chapitre nÕest pas dÕévaluer ou de classer les
altcoins, ou même de ne mentionner que les plus significatifs sur la base de quelque critère subjectif.
Au lieu de cela, nous allons mettre en exergue certains exemples qui montrent lÕampleur et la variété
de lÕécosystème, en relevant la première occurrence de chaque innovation ou différenciation
significative. Certains des exemples les plus intéressants dÕaltcoins sont en fait des échecs complets
dÕun point de vue monétaire. Ceci les rend peut-être encore plus intéressants à étudier, et souligne le
fait que ce chapitre ne doit pas être utilisé comme un guide pour lÕinvestissement.

Avec de nouvelles altcoins apparaissant tous les jours, il serait impossible de ne pas rater certaines
dÕentre elles, peut-être celle qui changera lÕhistoire. Le rythme de lÕinnovation est ce qui fait que cet
environnement est si excitant ; il garantit que ce chapitre sera incomplet et périmé dès sa publication.

Une Classification des Monnaies et Chaînes alternatives
Bitcoin est un projet open source, et son code a été utilisé comme base pour de nombreux autres
projets logiciels. La forme la plus commune de logiciel dérivé du code source de bitcoin est la création
de monnaies décentralisées alternatives, ou altcoins, qui utilisent les même briques de base pour
implémenter des monnaies numériques.

Il y a plusieurs couches de protocole implémentées au-dessus de la blockchain bitcoin. Ces  metacoins,
metachaînes, ou applications blockchain utilisent la blockchain comme une platforme applicative ou
étendent le protocole bitcoin en lui ajoutant des couches supplémentaires. Parmi les exemples, on
trouve les Colored Coins, Mastercoin, NXT et Counterparty.

Dans ce paragraphe nous allons examiner quelques altcoins notables, comme Litecoin, Dogecoin,
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Freicoin, Primecoin, Peercoin, Darkcoin, et Zerocoin. Ces altcoins sont notables pour des raisons
historiques ou parce quÕelles constituent un bon exemple dÕun type particulier dÕinnovation, pas parce
quÕelles ont la plus grande valeur ou quÕelles sont les "meilleures" altcoins.

Outre les altcoins, il existe également un certain nombre dÕimplémentations alternatives de blockchain
qui ne sont pas réellement des "coins", et que jÕappelle des altchains. Ces altchains implémentent un
algorithme de consensus ainsi quÕun livre de compte distribué comme plateforme pour des contrats,
systèmes dÕenregistrement de noms ou dÕautres applications. Les altchains se basent sur les mêmes
briques élémentaires, et utilisent parfois aussi une monnaie ou autre token comme mécanisme de
paiement, mais leur objectif principal nÕest pas dÕêtre une monnaie. Nous étudierons Namecoin et
Ethereum comme exemple de ces altchains.

Enfin, un certain nombre de concurrents de bitcoin proposent une monnaie numérique ou un réseau
de paiement, sans utiliser un livre de compte partagé ou un mécanisme de consensus basé sur une
preuve de travail ; cÕest le cas de Ripple et consorts. Ces technologies, nÕétant pas basées sur la
blockchain, sortent du cadre de ce livre et ne seront donc pas abordées dans ce chapitre.

Plateformes Meta Coin
Les meta coins et meta chaînes sont des couches logicielles implémentées au dessus de bitcoin, que ce
soit pour implémenter une monnaie-dans-la-monnaie ou une surcouche à la plateforme/protocole à
lÕintérieur du système bitcoin. Ces couches fonctionnelles étendent le coeur du protocole bitcoin et
ajoutent des fonctionnalités en codant des données supplémentaires à lÕintérieur des transactions et
adresses bitcoin. Les premières implémentations de meta coins utilisaient différents hacks pour
ajouter des métadonnées dans la blockchain, comme le fait dÕutiliser des adresses pour encoder des
données, ou encore des champs inutilisés des transactions (par exemple le champ sequence). Depuis
lÕintroduction de lÕopcode OP_RETURN dans les scripts de transaction, les meta coins ont eu la
possibilité dÕenregistrer des métadonnées directement dans la blockchain, et la plupart sont en train de
migrer en ce sens.

Colored Coins

Les Colored coins sont un meta protocole qui encapsule des informations sur de petites quantités de
bitcoin. une coin "colorée" est une somme de bitcoin réassignée pour représenter un actif différent.
Imaginez, par exemple, prendre un billet de 1 dollar, et mettre un coup de tampon dessus indiquant,
"Ce billet constitue 1 action de la société Acme Inc." Maintenant, le billet peut servir à deux choses :
cÕest un billet de banque et aussi un certificat dÕaction. Parce que sa valeur en tant quÕaction est
supérieure, vous ne voudriez pas vous en servir pour acheter des bonbons, donc il ne sera en pratique
plus utilisé comme unité de monnaie. Les colored coins fonctionnent de manière similaire, en
convertissant une certaine valeur, faible, de bitcoin en un certificat représentant un autre actif. Le
terme "coloré" fait référence à lÕidée de donner une signification spéciale à travers un attribut
particulier comme une couleur Ñ cÕest une métaphore : il nÕy a pas de couleurs dans les colored coins.

Les colored coins sont gérés par des porte-monnaie spécialisés qui enregistrent et interprètent les
métadonnées associées aux bitcoin colorés. En utilisant un tel wallet, lÕutilisateur va colorer une
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somme de bitcoins en leur ajoutant un label doté dÕune signification spéciale. Par exemple, un label
pourrait représenter des certificats dÕaction, des obligations, des propriétés immobilières, des matières
premières, ou des articles de collection. Les utilisateurs de colored coins sont totalement libres de
lÕattribution et lÕinterprétation de la "couleur" associée à des bitcoins. Pour colorer des pièces,
lÕutilisateur définit une métadonnée associée, comme par exemple un mode dÕémission, le fait de
pouvoir ou non les subdiviser, un symbole et une description, ainsi que dÕautres informations. Une fois
colorées, les pièces peuvent être achetées et vendues, subdivisées, agrégées, et peuvent faire lÕobjet de
dividendes. Les colored coins peuvent aussi être "décolorées" en leur retirant leur attribut spécial, et
peuvent être rachetées pour leur valeur faciale en bitcoin.

Pour montrer un exemple dÕutilisation des colored coins, nous avons créé un ensemble de 20 colored
coins portant le symbole "MasterBTC", qui représentent un bon pour un exemplaire gratuit de ce livre,
comme le montre la figure Le profil de métadonnées des colored coins, configuré comme bon pour un
exemplaire gratuit du livre. Chaque unité de MasterBTC représentée par ces colored coins peut
maintenant être vendue ou donnée à nÕimporte quel utilisateur doté dÕun wallet compatible avec les
colored coins ; ce dernier pourra à son tour les transférer à dÕautres, ou bien les échanger auprès de
lÕémetteur contre un exemplaire du livre. Cet exemple peut être vu ici.

Example 1. Le profil de métadonnées des colored coins, configuré comme bon pour un exemplaire gratuit
du livre

{
Ê "source_addresses": [
Ê   "3NpZmvSPLmN2cVFw1pY7gxEAVPCVfnWfVD"
Ê ],
Ê "contract_url":
"https://www.coinprism.info/asset/3NpZmvSPLmN2cVFw1pY7gxEAVPCVfnWfVD",
Ê "name_short": "MasterBTC",
Ê "name": "Free copy of \"Mastering Bitcoin\"",
Ê "issuer": "Andreas M. Antonopoulos",
Ê "description": "This token is redeemable for a free copy of the book \"Mastering
Bitcoin\"",
Ê "description_mime": "text/x-markdown; charset=UTF-8",
Ê "type": "Other",
Ê "divisibility": 0,
Ê "link_to_website": false,
Ê "icon_url": null,
Ê "image_url": null,
Ê "version": "1.0"
}

Mastercoin

Mastercoin est une couche de protocole se superposant à bitcoin, et qui constitue une plateforme pour
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une variété dÕapplications étendant le système bitcoin. Mastercoin utilise la devise MST pour
lÕétablissement de transactions, mais elles nÕa pas pour but principal dÕêtre une monnaie. Il sÕagit plutôt
dÕune plateforme pour construire dÕautres choses, comme une monnaie personnalisée, des tokens de
"propriété intelligente", des places de marché dÕactifs décentralisés, et des contrats. Dites vous que
Mastercoin est un protocole applicatif superposé à la couche de transport de transactions financières
quÕest bitcoin, tout comme HTTP est situé au-dessus de TCP.

Mastercoin fonctionne principalement par le biais de transactions envoyées et reçues vers et depuis
des adresses bitcoin spéciales appelées  adresses "exodus" (1EXoDusjGwvnjZUyKkxZ4UHEf77z6A5S4P),
exactement comme HTTP utilise un port TCP spécifique (port 80) pour se différencier du reste du
traffic TCP. Le protocole Mastercoin est en train dÕévoluer progressivement, de lÕutilisation de ces
adresses exodus avec multi-signatures à celle de lÕopérateur OP_RETURN pour encoder les
métadonnées de transaction.

Counterparty

Counterparty est une autre couche de protocole implémentée au-dessus de bitcoin. Counterparty
permet le développement de monnaies personnalisées, de tokens échangeables, dÕinstruments
financiers, de places de marché dÕactifs décentralisés, et davantage. Counterparty est implémenté
principalement via lÕopérateur op_RETURN dans le langage de script bitcoin, pour encoder les
métadonnées qui étendent la signification des transactions bitcoin. Counterparty utilise la devise XCP
comme token pour effectuer des transactions.

Les Alt Coins
La grande majorité des altcoins sont dérivées du code source de bitcoin, cÕest ce quÕon appelle des
"forks". Certaines sont implémentées "depuis zéro", en se basant sur le modèle de la blockchain, mais
sans utiliser le code source de bitcoin. Les altcoins et altchains (cf. chapitre suivant) sont toutes les
deux des implémentations distinctes de la technologie blockchain, et les deux utilisent leur propre
blockchain. La dénomination différente sert à indiquer que les altcoins servent principalement de
monnaie, alors que les altchains sont utilisées à dÕautres fins.

Pour être précis, le premier fork alternatif majeur du code de bitcoin nÕétait pas un altcoin, mais
lÕaltchain Namecoin, que nous étudierons dans un prochain paragraphe.

Sur la base de la date de son annonce, le premier altcoin résultant dÕun fork de bitcoin est apparu en
Août 2011 ; il sÕappelait IXCoin. IXCoin modifiait quelques un des paramètres originaux de bitcoin, en
particulier il accélérait la création monétaire en fixant la récompense à 96 coins par bloc.

En Septembre 2011, _Tenebrix fut lancé. Tenebrix était la première cryptomonnaie à implémenter un
algorithme de preuve de travail alternatif, nommé  scrypt, conçu à lÕorigine pour lÕextension de mot de
passe (résistance à la force brute). LÕobjectif affiché de Tenebrix était de faire une monnaie résistante
au minage sur GPU et ASIC, en utilisant un algorithme gourmand en mémoire vive. Tenebrix échoua
comme monnaie, mais servit de base pour Litecoin, qui a connu un un grand succès et à donner lieu à
des centaines de clones.
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Litecoin, en plus dÕutiliser scrypt comme algorithme de preuve de travail, implémenta également un
temps de génération de bloc plus rapide, en ciblant 2.5 minutes contre 10 minutes pour bitcoin. La
monnaie résultante est vendue comme étant à bitcoin ce que lÕargent est à lÕor, et est destinée à être
une monnaie alternative légère. Grâce au temps de confirmation plus rapide et à la limite totale de 84
millions, beaucoup dÕadhérents de Litecoin pensent quÕil est plus adapté aux transactions dans les
commerces que bitcoin.

Les altcoins ont continué à proliférer en 2011 et 2012, quÕils soient basés sur bitcoin ou sur Litecoin. Au
début de 2013, il y avait 20 altcoins sÕaffrontant pour se faire une place sur le marché. Avant la fin de
2013, ce nombre avait explosé pour atteindre 200, 2013 devenant rapidement "lÕannée des altcoins". La
croissance des altcoins à continué en 2014, avec plus de 500 altcoins en existence à au moment dÕécrire
ce livre. Plus de la moitié des altcoins aujourdÕhui sont des clones de Litecoin.

Créer un altcoin est facile, cÕest pourquoi il en existe maintenant plus de 500. La plupart des altcoins
diffèrent peu de bitcoin et nÕoffrent rien qui vaille la peine de les étudier. Beaucoup sont en fait des
tentatives pour enrichir leurs créateurs. Parmi ces copies et les fraudes de type "pump-and-dump", il y
a toutefois quelques exceptions notables et des innovations très importantes. Ces altcoins prennent des
approches radicalement différentes, ou ajoutent une innovation significative au modèle de conception
de bitcoin. Il y a trois  domaines principaux dans lesquels ces altcoins se différencient de bitcoin :

¥ Une politique monétaire différente

¥ Un mécanisme de preuve de travail ou de consensus différent

¥ Des fonctionnalités spécifiques, telles quÕune anonymat fort

Pour plus dÕinformation, référez-vous à ce frise chronologique des altcoins et altchains.

Évaluer un altcoin

Avec tant dÕaltcoins en circulation, comment décide-t-on lesquels sont dignes dÕattention ? Certains
altcoins visent à se propager largement et être utilisées comme monnaie. DÕautres sont des laboratoires
pour expérimenter différentes fonctionnalités et modèles monétaires. DÕautres sont justes des
arnaques pour enrichir rapidement leurs créateurs. Pour évaluer les altcoins, je regarde leur
caractéristiques principales et leurs métriques marché.

Voici quelques questions à se poser pour évaluer à quel point un altcoin se différencie de bitcoin :

¥ LÕaltcoin introduit-il une innovation significative ?

¥ Y a-t-il une différence suffisamment intéressante pour attirer des utilisateurs de bitcoin ?

¥ LÕaltcoin sÕadresse-t-il à un marché de niche ou une application intéressants ?

¥ LÕaltcoin peut-il attirer suffisamment de mineurs pour être protégé contre les attaques de
consensus ?

Voici certaines des métriques financières et marché les plus importantes à considérer :

¥ Quelle est la capitalisation totale de lÕaltcoin ?
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¥ Quelle est lÕestimation du nombre dÕutilisateurs/wallets de lÕaltcoin ?

¥ Combien de marchands acceptent lÕaltcoin ?

¥ Combien de transactions journalières (en volume) sont exécutées sur lÕaltcoin ?

¥ Quelle valeur est négociée quotidiennement ?

Dans ce chapitre, nous allons nous concentrer principalement sur les caractéristiques techniques et le
potentiel dÕinnovation des altcoins représentées par la première série de questions.

Paramètres Monétaires Alternatifs : Litecoin, Dogecoin, Freicoin

Bitcoin est doté de paramètres monétaires lui conférant les caractéristiques particulières dÕune
monnaie déflationniste à émission plafonnée. Elle est limitée à 21 millions dÕunités de monnaie
majeures (ou 21 billiards dÕunités mineures), son taux dÕémission diminue de façon géométrique, et un
nouveau bloc est créé toutes les 10 minutes, ce qui contrôle la vitesse de confirmation des transactions
et la génération de monnaie. Beaucoup dÕaltcoins ont modifié ces paramètres principaux pour aboutir
à une politique monétaire différente. Les exemples suivants sont certains des plus notables parmi les
centaines dÕaltcoins qui existent.

Litecoin

Apparu en 2011, Litecoin est un des premiers altcoins, et la deuxième monnaie numérique après
bitcoin. Ses innovations principales étaient lÕutilisation de scrypt comme algorithme de preuve de
travail (hérité de Tenebrix), et ces paramètres monétaires plus légers et rapides.

¥ Temps de génération de bloc : 2.5 minutes

¥ Masse monétaire totale : 84 millions de pièces dÕici 2140

¥ Algorithme de consensus : Preuve de travail Scryppt

¥ Capitalisation totale : 260 millions de dollars à la mi-2014

Dogecoin

Dogecoin est sorti en Décembre 2013, et est basé sur un fork de Litecoin. Dogecoin est remarquable en
ce quÕil possède une politique dÕémission rapide, et une masse monétaire très élevée, afin dÕencourager
le fait de dépenser et donner des pourboires. Dogecoin est également notable parce quÕil a débuté
comme une plaisanterie mais est devenu assez populaire, avec une communauté importante et active,
avant de décliner rapidement en 2014.

¥ Temps de génération de bloc : 60 secondes

¥ Masse monétaire totale : 100 000 000 000 (100 milliards) de Doge dÕici 2015

¥ Algorithme de consensus : Preuve de travail Scryppt

¥ Capitalisation totale : 12 millions de dollars à la mi-2014.

6



Freicoin

Freicoin est apparu en Juillet 2012. CÕest une  monnaie fondante, ce qui signifie que son taux dÕintérêt
est négatif pour la monnaie stockée. Un TAEG de 4.5% est associé à la valeur stockée dans Freicoin, afin
dÕencourager la consommation et décourager lÕaccumulation dÕargent. Freicoin est notable en ce quÕil
implémente une politique monétaire à lÕexact opposé de la déflation propre à Bitcoin. Freicoin nÕa pas
eu de succès en tant que monnaie, mais est un exemple intéressant de la variété de politiques
monétaires qui peuvent être mises en oeuvre par les altcoins.

¥ Temps de génération de bloc : 10 minutes

¥ Masse monétaire totale : 100 millions de pièces en 2140

¥ Algorithme de consensus : Preuve de travail SHA256

¥ Capitalisation totale : 130 000 dollars à la mi-2014

Innovation dans lÕalgorithme de consensus : Peercoin, Myriad, Blackcoin,
Vericoin, NXYT

Le mécanisme de consensus de Bitcoin est basé sur une preuve de travail qui utilise lÕalgorithme
SHA256. Les premiers altcoins ont introduit scrypt comme algorithme de preuve de travail alternatif,
permettant au minage dÕêtre davantage tourné vers les CPU, et moins susceptible dÕêtre centralisés
avec des ASICs. Depuis lors, les innovations dans le mécanisme de consensus ont continué à un rythme
effréné. Plusieurs altcoins ont adopté un ensemble dÕalgoithmes tels que scrypt, , scrypt-N, Skein,
Groestl, SHA3, X11, Blake, et dÕautres. Certains altcoins ont combiné plusieurs algorithmes de preuve
de travail. En 2013, nous avons vu lÕinvention dÕune alternative à la preuve de travail, appelée preuve
de participation, qui est à la base de beaucoup dÕaltcoins modernes.

La preuve de participation est un système par lequel les détenteurs dÕune monnaie peuvent mettre en
jeu de la monnaie comme collatéral associé à un intérêt. Un peu à la façon dÕun certificat de dépôt, les
participants peuvent mettre en réserve une portion de leurs fonds, et voir leur investissement
rémunéré sous la forme dÕémission de monnaie (par le biais de taux dÕintérêts), et de commissions de
transactions.

Peercoin

Peercoin est apparu en Août 2012, et est la première altcoin à utiliser une hybridation de preuve de
travail et de preuve de participation pour émettre de la monnaie.

¥ Temps de génération de bloc : 10 minutes

¥ Masse monétaire totale : Illimitée

¥ Algorithme de consensus : (Hybride) preuve de participation avec une preuve de travail initiale.

¥ Capitalisation totale : 14 millions de dollars à la mi-2014
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Myriad

Myriad est sorti en Février 2014 et est notable pour avoir utilisé cinq algorithmes de preuve de travail
différents (SHA256d, Scrypt, Qubit, Skein, ou Myriad-Groestl) simultanément, avec une difficulté
variant pour chaque algorithme en fonction de la participation au minage. Le but est dÕimmuniser
Myriad contre le minage par ASIC la centralisation, et de le rendre beaucoup plus résistant face à une
attaque de consensus, parce que de multiples algorithmes devraient être attaqués simultanément.

¥ Temps de génération de bloc : 30 secondes en moyenne (cible de 2.5 minutes par algorithme de
minage)

¥ Masse monétaire totale : 2 milliard dÕici 2024

¥ Algorithme de consensus : Preuve de travail multi-algorithmique

¥ Capitalisation totale : 120 000 dollars à la mi-2014

Blackcoin

Blackcoin fut présenté en Février 2014 et utilise un algorithme de consensus par preuve de
participation. Il est également notable pour introduire des "multipools", un type de pool de minage
pouvant choisir entre différents altcoins automatiquement en fonction de la profitabilité.

¥ Temps de génération de bloc : 1 minute

¥ Masse monétaire totale : Illimitée

¥ Algorithme de consensus : Preuve de participation

¥ Capitalisation totale : 3.7 million de dollars à la mi-2014

VeriCoin

VeriCoin a été lancé en Mai 2014. Il utilise un algorithme de consensus par preuve de participation
avec un taux dÕintérêt variable qui sÕajuste dynamiquement en fonction du poids relatif de lÕoffre et de
la demande sur le marché. Il est également le premier altcoin à proposer un échange automatisé vers
bitcoin lors dÕun paiement en bitcoin via le wallet.

¥ Temps de génération de bloc : 1 minute

¥ Masse monétaire totale : Illimitée

¥ Algorithme de consensus : Preuve de participation

¥ Capitalisation totale : 1.1 million de dollars à la mi 2014

NXT

NXT (prononcé "Next") est un altcoin en preuve de participation "pure", en ce quÕil nÕutilise pas de
minage par preuve de travail. NXT est une implémentation depuis zéro dÕune cryptomonnaie, pas un
fork de bitcoin ou dÕun autre altcoin. NXT implémente de nombreuses fonctionnalités avancées, dont
un registre de nom (similaire à Namecoin), une place de marché dÕactifs décentralisée (similaire au
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Colored Coins), une messagerie intégrée décentralisée et sécurisée (similaire à Bitmessage), et une
délégation de participation (pour déléguer une preuve de participation à un tiers). Pour ses partisans,
NXT est la "génération suivante" de cryptomonnaie, ou cryptomonnaie 2.0.

¥ Temps de génération de bloc : 1 minute

¥ Masse monétaire totale : Illimitée

¥ Algorithme de consensus : Preuve de participation

¥ Capitalisation totale : 30 millions de dollars à la mi-2014

Innovation du minage à double-emploi : Primecoin, Curecoin, Gridcoin

LÕalgorithme de preuve de travail de Bitcoin nÕa quÕun seul objectif : sécuriser le réseau bitcoin. Par
comparaison à la sécurité des systèmes de paiement traditionnels, le coût du minage nÕest pas très
élevé. Cependant, il a été critiqué par beaucoup comme étant un "gâchis". La génération dÕaltcoin
suivante tente de résoudre ce problème. Les algorithmes de preuve de travail à double-emploi
résolvent un problème "utile" spécifique, tout en produisant une preuve de travail pour sécuriser le
réseau. Le risque dÕajouter un rôle externe à la sécurité de la monnaie est que cela ajoute également
une influence sur la courbe offre/demande.

Primecoin

Primecoin a été annoncée en Juillet 2013. Son algorithme de preuve de travail recherche des nombres
premiers, en calculant  chaînes de Cunningham et de nombres premiers jumeaux. Les nombres
premiers sont utiles dans un certain nombre de disciplines scientifiques. La blockchain Primecoin
contient les nombres premiers découverts, constituant ainsi une archive publique de découverte
scientifique en parallèle du livre public des transactions.

¥ Temps de génération de bloc : 1 minute

¥ Masse monétaire totale : Illimitée

¥ Algorithme de consensus : Preuve de travail par calcul de chaîne de nombres premiers

¥ Capitalisation totale : 1.3 millions de dollars à la mi-2014

Curecoin

Curecoin a été annoncé en Mai 2013. Il combine un algorithme de preuve de travail par SHA256 avec
une recherche de repliement de protéine à travers le projet Folding@Home. Le repliement de protéine
est une simulation des interactions biochimiques des protéines, gourmande en puissance de calcul,
utilisée pour mettre au point de nouveaux médicaments.

¥ Temps de génération de bloc : 10 minutes

¥ Masse monétaire totale : Illimitée

¥ Algorithme de consensus : Preuve de travail avec recherche de repliement de protéine

¥ Capitalisation totale : 58 000 dollars à la mi-2014
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Gridcoin

Gridcoin est apparu en Octobre 2013. En complément dÕune preuve de travail basée sur scrypt, les
mineurs participent aussi à la grille de calcul distribuée BOINC. BOINC Ñ Berkeley Open Infrastructure
for Network Computing Ñ est un protocole ouvert pour les grilles de calcul de recherche scientifique,
qui permet aux participants de mettre à disposition la puissance de calcul non utilisée, à destination
dÕun large éventail de recherche académique en informatique. Gridcoin utilise BOINC comme une
plateforme de calcul générique, plutôt que de résoudre des problèmes scientifiques spécifiques comme
les nombres premiers ou le repliement de protéines.

¥ Temps de génération de bloc : 150 secondes

¥ Masse monétaire totale : Illimitée

¥ Algorithme de consensys : Preuve de travail avec participation à la grille de calcul BOINC

¥ Capitalisation totale : 122 000 dollars à la mi-2014

Altcoins orientées anonymat : CryptoNote, Bytecoin, Monero,
Zerocash/Zerocoin, Darkcoin

Bitcoin est souvent décrit à tort comme une monnaie "anonyme". En fait, il est relativement facile de
relier des identités à des adresses bitcoin et, en utilisant lÕanalyse big-data, de relier ces adresses entre
elles pour réaliser un schéma complet du profil de dépenses de quelquÕun. Plusieurs altcoins vise à
résoudre ce problème directement en se concentrant sur un anonymat fort. La première tentative de
ce genre est très certainement Zerocoin, un protocole meta-coin au dessus de bitcoin permettant de
préserver lÕanonymat, introduit par un papier présenté au Symposium de lÕIEEE sur la Sécurité et la
Vie privée en 2013. Zerocoin sera implémenté comme un altcoin complètement séparé appelé
Zerocash, en développement au moment dÕécrire ce livre. Une approche alternative à lÕanonymat a été
lancée avec CryptoNote dans un papier publié en Octobre 2013. CryptoNote est une brique
technologique qui est implémentée par un certain nombre dÕaltcoins forkés, étudiés ci-après. En plus
de Zerocash et CryptoNotes, il y a plusieurs monnaies anonymes indépendantes, comme Darkcoin, qui
utilise des adresses camouflées et un mélange des transactions pour garantir lÕanonymat.

Zerocoin/Zerocash

Zerocoin constitue une approche théorique de lÕanonymat en matière de monnaies numériques,
introduit en 2013 par des chercheurs à lÕUniversité Johns Hopkins. Zerocash en est une
implémentation de type altcoin, qui est en développement et nÕest pas encore sortie.

CryptoNote

CryptoNote est un altcoin, implémentation de référence apportant les bases dÕun cash numérique
anonyme. Il a été présenté en Octobre 2013. Il est conçu pour être forké vers différentes
implémentations, et a un mécanisme de remise à zéro périodique intégré le rendant lui-même
inutilisable comme monnaie. Plusieurs altcoins sont nées de CryptoNote, comme Bytecoin (BCN), Aeon
(AEON), Boolberry (BBR), duckNote (DUCK), Fantomcoin (FCN), Monero (XMR), MonetaVerde (MCN),
Quazarcoin (QCN). CryptoNote est aussi notable pour être une implémentation depuis zéro dÕune
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monnaie numérique, et pas un fork de bitcoin.

Bytecoin

Bytecoin a été la première implémentation partant de CryptoNote, offrant une monnaie anonyme
viable basée sur la technologie CryptoNote. Bytecoin a été lancée en Juillet 2012. Notez quÕil existait
auparavant un altcoin nommé Bytecoin avec le symbole monétaire BTE, alors que le Bytecoin dérivé de
CryptoNote possède le symbole BCN. Bytecoin utilise lÕalgorithme de preuve de travail Cryptonight, qui
requiert un accès à un minimum 2MB de RAM par instance, ce qui exclut le mining GPU ou ASIC. Via
CryptoNote, Bytecoin hérite des signatures circulaires, des transactions intraçables et dÕun anonymat
résistant à lÕanalyse de blockchain.

¥ Temps de génération de blloc : 2 minutes

¥ Masse monétaire totale : 184 milliards de BCN

¥ Algorithme de consensus : Preuve de travail Cryptonight

¥ Capitalisation totale : 3 millions de dollards à la mi-2014

Monero

Monero est une autre implémentation de CryptoNote. Sa courbe dÕémission est légèrement plus plate
que celle de Bytecoin, 80% de la monnaie étant générée dans les quatre premières années. Il offre les
mêmes propriétés dÕanonymat héritées de CryptoNote.

¥ Temps de génération de bloc : 1 minute

¥ Masse monétaire totale : 18.4 millions de XMR

¥ Algorithme de consensus : Preuve de travail Cryptonight

¥ Capitalisation totale : 5 millions de dollars à la mi-2014

Darkcoin

Darkcoin a été lancé en Janvier 2014. Darkcoin implémente une monnaie anonyme via un protocole de
re-mélange pour toutes les transactions, apppelé DarkSend. Darkcoin est également notable pour
utiliser 11 passes de fonctions de hash différentes (blake, bmw, groestl, jh, keccak, skein, luffa,
cubehash, shavite, simd, echo) pour lÕalgorithme de preuve de travail.

¥ Temps de génération de bloc : 2.5 minutes

¥ Masse monétaire totale : Maximum 22 million de DRK

¥ Algorithme de consensus : Preuve de travail multi-algorithme à plusieurs passes

¥ Capitalisation totale : 19 millions de dollars à la mi-2014

Altchains  à vocation non monétaires
Les altchains sont des implémentations alternatives du design pattern de la blockchain, qui ne sont pas
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utilisées principalement comme monnaie. Beaucoup incluent une monnaie, mais cette dernière est
utilisée comme un jeton pour allouer quelque chose dÕautre, comme une ressource ou un contrat. La
monnaie, en dÕautres termes, nÕest pas lÕobjet principal de la plateforme ; elle en est une propriété
secondaire.

Namecoin

Namecoin a été le premier fork du noeud bitcoin. Namecoin est une plateforme décentralisée clé-
valeur dÕenregistrement et de transfert qui utilise la blockchain. Elle propose un registre global de nom
de domaine similaire au systèmes des noms de domaine sur Internet. Namecoin est actuellement
utilisé comme un service de nom de domaine (DNS) alternatif pour le nom de domaine racine .bit.
Namecoin peut aussi être utilisé pour enregistrer des noms et des paires clé-valeur dans dÕautres
espaces de noms, comme des adresses emails, des clés de cryptage, des certificats SSL, des signatures
de fichiers, des systèmes de vote, des certificats dÕaction, et une multitude dÕautres applications.

Le système Namecoin inclue la monnaie Namecoin (symbole NMC), utilisée pour payer les
commissions de transactions associées à lÕenregistrement et au transfert des noms. Au prix actuel, la
commission pour enregistrer un nom est de 0.01 NMC, soit approximativement 1 cent US. Comme dans
bitcoin, les commissions sont prélevées par les mineurs namecoin.

Les paramètres de base de Namecoin sont les mêmes que ceux de bitcoin.

¥ Temps de génération de bloc : 10 minutes

¥ Masse monétaire totale : 21 millions de NMC dÕici 2140

¥ Algorithme de consensus : Preuve de travail SHA256

¥ Capitalisation totale : 10 millions de dollars à la mi-2014

Les espaces de nom de Namecoin ne sont pas limités, et nÕimporte qui peut utiliser le namespace quÕil
souhaite, de la façon où il lÕentend. Toutefois, certains namespaces ont une spécification bien définie,
de telle sorte que quand ils les lisent depuis la blockchain, les logiciels savent comment les lire et les
interpréter SÕils sont malformés, alors le logiciel que vous utilisez vous renverra une erreur. Les
namespaces les plus populaires sont :

¥ d/ est lÕespace de nom pour les domaines .bit + id/ est le namespace pour stocker des identifiants de
personne, tels que des adresses email, des clés PGP, etc.

¥ u/ est une spécification supplémentaire plus structurée pour stocker des identités (basée sur
openspecs)

Le client Namecoin est très semblable à Bitcoin Core, car il dérive du même code source. Après
installation, le client va télécharger la copie complète de la blockchain Namecoin et sera alors prêt à
effectuer des requêtes ou enregistrer des noms. Il y a trois commandes principales :

name_new

Teste lÕexistence ou pré-enregistre un nom
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name_firstupdate

Enregistre un nom et publie lÕenregistrement

name_update

Modifie ou met à jour un enregistrement de nom.

Par exemple, pour enregistrer un domaine mastering-bitcoin.bit, nous utilisons la commande
name_new comme suit :

$ namecoind name_new d/mastering-bitcoin

[
Ê   "21cbab5b1241c6d1a6ad70a2416b3124eb883ac38e423e5ff591d1968eb6664a",
Ê   "a05555e0fc56c023"
]

La commande name_new permet de réserver le nom en créant un hash du nom avec un clé aléatoire.
Les deux chaînes retournées par name_new sont le hash et la clé aléatoire (a05555e0fc56c023 dans
lÕexemple qui précède), et sont utilisées pour publier lÕenregistrement. Une fois que la demande de
réservation a été enregistrée dans la blockchain Namecoin elle peut être convertie en enregistrement
public avec la commande name_firstupdate, en fournissant la clé aléatoire :

$ namecoind name_firstupdate d/mastering-bitcoin a05555e0fc56c023 "{"map": {"www":
{"ip":"1.2.3.4"}}}}"
b7a2e59c0a26e5e2664948946ebeca1260985c2f616ba579e6bc7f35ec234b01

Cet exemple va associer le nom de domaine www.mastering-bitcoin.bit à lÕadresse IP 1.2.3.4. Le hash
retourné est lÕID de transaction qui peut être utilisé pour suivre lÕenregistrement. Vous pouvez voir
quels noms vous sont attribués en exécutant la commande name_list :

$ namecoind name_list
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[
Ê   {
Ê       "name" : "d/mastering-bitcoin",
Ê       "value" : "{map: {www: {ip:1.2.3.4}}}}",
Ê       "address" : "NCccBXrRUahAGrisBA1BLPWQfSrups8Geh",
Ê       "expires_in" : 35929
Ê   }
]

Les enregistrements Namecoin doivent être mis à jour tous les 36 000 blocs (approximativement 200 à
250 jours). La commande name_update nÕa pas de commission, dÕoù il résulte que renouveler un
domaine Namecoin est gratuit. Des tierces parties peuvent prendre en charge lÕenregistrement, le
renouvellement automatique, la mise à jour par interface web, en échange dÕune faible commission.
Avec un fournisseur tiers, vous éviter de devoir faire tourner un client Namecoin, mais vous perdez
lÕindépendance quÕoffre ce système dÕenregistrement de nom décentralisé .

Ethereum

Ethereum est un processeur de contrat Turing-complet, et une plateforme dÕexécution basée sur un
registre de type blockchain. Ce nÕest pas un clone de Bitcoin, mais une conception et une
implémentation complètement indépendante. Ehtereum possède une monnaie intégrée, appelée ether,
quÕil est nécessaire de payer exécuter un contrat. La blockchain Ethereum enregistre des contrats, qui
sont exprimés dans un langage Turing-complet bas niveau, ressemblant à du byte code.  Globalement,
un contrat est un programme qui tourne sur tous les noeuds du système Ethereum. Les contrats
Ethereum peuvent stocker des données, envoyer et recevoir des paiements en ether, stocker de lÕether,
et exécuter un éventail infini dÕopérations (dÕoù le caractère Turing-complet), tels des agents logiciels
autonomes et décentralisés.

Ethereum peut implémenter des systèmes relativement complexes, qui sont ailleurs implémentés par
des altchains dédiées. Par exemple, ce qui suit est un contrat dÕenregistrement de nom similaire à
Namecoin, écrit en Ethereum (ou plus précisément, écrit dans un langage de haut-niveau compilable
en code Ethereum) :

if !contract.storage[msg.data[0]]: # Is the key not yet taken?
Ê   # Then take it!
Ê   contract.storage[msg.data[0]] = msg.data[1]
Ê   return(1)
else:

Ê   return(0) // Otherwise do nothing
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Futur des Monnaies
Le futur des monnaies cryptographiques, de façon générale, est encore plus prometteur que celui de
bitcoin. Bitcoin a introduit une nouvelle forme dÕorganisation décentralisée et de consensus qui a
engendré des centaines dÕinnovations incroyables. Ces inventions vont probablement affecter des pans
entiers de lÕéconomie, depuis la science des systèmes distribués jusquÕà la finance, les monnaies, les
banques centrales, et la gestion des entreprises. Beaucoup dÕactivités humaines, qui jusquÕalors
nécessitaient des organisations ou institutions centralisées servant de point de contrôle ou de
confiance, peuvent maintenant être décentralisées. LÕinvention de la blockchain et du système de
consensus va réduire significativement le coût de lÕorganisation et de la coordination des systèmes
fonctionnant à grande échelle, tout en supprimant les possibilités de concentration de pouvoir,
corruption, et capture règlementaire.

15



Sécurité du Bitcoin
La sécurisation du bitcoin est un enjeu important car les bitcoins ne sont pas une représentation
abstraite dÕune valeur, contrairement au solde dÕun compte en banque. Bitcoin sÕapparente plus à du
cash numérique ou de lÕor. Vous avez probablement déjà entendu lÕexpression "La possession
représente les neuf dixièmes de la loi". Et bien avec le bitcoin, la possession cÕest la loi. La possession
de clés permettant de débloquer des bitcoins est équivalente à la possession de billets ou de lingots
dÕun métal précieux.  Vous pouvez les perdre, les déplacer, vous les faire voler, ou donner
accidentellement le mauvais montant à quelquÕun. Dans tous ces cas, les utilisateurs nÕont aucun
recours, exactement comme si il jetaient des billets de banque dans une rue bondée.

Cependant, bitcoin fournit des options que le cash lÕor ou les comptes en banques ne fournissent pas.
Un portefeuille bitcoin contenant vos clés, peut être sauvegardé sous forme de copies multiples, il peut
même être imprimé sur du papier en tant que sauvegarde physique. Il est impossible de "sauvegarder"
du cash de lÕor ou un compte en banque. Bitcoin présente assez de différences par rapports aux
anciens modèle pour que lÕon puisse envisager sa sécurité dÕune manière totalement nouvelle.

Principes de Sécurité
Le principe de base du bitcoin est la décentralisation et ce principe possède des implications
importante pour sa sécurité. Un modèle centralisé tel quÕune banque traditionnelle ou un réseau de
paiement, dépends du contrôle de lÕaccès et la capacité à garder les voleurs hors du système. en
comparaison, un système décentralisé comme bitcoin déplace la responsabilité et le contrôle vers les
utilisateurs. Parce que la sécurité du réseau est basée sur la preuve de travail et non le contrôle
dÕaccès, le réseau peut être ouvert et aucun cryptage nÕest requis pour le traffic bitcoin.

Sur les réseaux de paiment traditionnels, tels que les systèmes de cartes de crédit, le paiment nÕest pas
limité car il contient lÕidentifiant privé de lÕutilisateur (le numéro de carte de crédit).  Après la dépense
initiale, quiconque ayant accès à cet identifiant peut "retirer" des fonds à lÕinfiini. Ducoup, le réseau de
paiement a besoin dÕêtre crypté tout le long et doit sÕassurer quÕaucune oreille indiscrète ou
intermédiaire ne peut compromettre le trafic de paiement, lors du transit ou lorsquÕil est enregistré. Si
un acteur malveillant arrive à accéder au système, il peut compromettre les transactions et les
informations de paiement pouvant être utilisées pour créer de nouvelles transactions. Pire, quand les
donnée dÕun client sont compromises, les clients sont exposés à une usurpation dÕidentité et doivent
agir afin dÕempêcher lÕusage frauduleux des comptes compromis.

Bitcoin est radicalement différent. Une transaction bitcoin nÕautorise quÕun montant précis vers un
destinataire spécifique, et ne peut être contrefaite ou modifiée. Elle ne révèle aucune information
privée telle que lÕidentité des parties, et ne peut être utilisée pour lÕautorisation de paiement
additionnels. Par conséquent, un réseau de paiement bitcoin nÕa pas besoin dÕêtre crypté ou protégé
des oreilles indiscrètes. En fait, vous pouvez diffuser des transaction bitcoin sur un réseau public tel
quÕun réseau WiFi ou Bluetooth public, sans aucune perte de sécurité.

Le modèle de sécurité décentralisé de bitcoin donne beaucoup de pouvoir aux utilisateurs. Ce pouvoir
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sÕaccompagne de la responsabilité de maintenir le secret des clés. Pour la plupart des utilisateurs ce
nÕest pas si facile à réaliser, en particulier sur les terminaux web grand public tels que les smartphones
ou les ordinateurs portables. Bien que le modèle de sécurité décentralisé de bitcoin évite les problèmes
évoqués pour les cartes de crédit, beaucoup dÕutilisateurs sont incapable de sécuriser de façon
adéquate leurs clés et se les font tout simplement voler, les unes après les autres.

Construire des systèmes bitcoin sécurisés

Le principe le plus important pour les développeur bitcoin est la décentralisation. La plupart des
développeurs sont familiers des modèles de sécurité centralisés et peuvent être tentés de reproduire
ces modèles à leurs applications bitcoin, ce qui peut avoir des conséquences désastreuses.

La sécurité Bitcoin repose sur le control décentralisé des clés et sur lÕindépendance de la validation des
transaction par les mineurs. Si vous souhaitez profiter de la sécurité Bitcoin, vous devez vous assurer
que vous restez dans le cadre de son modèle de sécurité. En dÕautres termes : ne privez pas les
utilisateurs du contrôle de leur clés et ne traitez pas des transaction en dehors de la blockchain.

Par exemple, jusquÕa récemment, beaucoup dÕéchanges bitcoin concentraient tous les fonds des
utilisateurs dans des "hot wallets" (des porte-monnaies connectés) avec les clés enregistrées sur un
serveur unique. Une telle architecture dépossède les utilisateur de tout contrôle et centralise le
contrôle des clés sur un système unique. Beaucoup de ces échanges ont fini par se faire hacker, avec
des conséquences désastreuse pour leurs clients.

Une autre erreur très courante est de traiter les transaction en dehors de la blockchain dans une
tentative de réduire les frais de transaction ou dÕaccélérer leur traitement. Un système "off blockchain"
enregistrera les transaction au sein dÕun registre interne centralisé et les synchronisera de façon
périodique avec la blockchain.  Cette pratique substitue encore la sécurité décentralisée de bitcoin avec
une approche propriétaire et centralisée. Quand les transactions sont en dehors de la blockchain, des
registres mal sécurisés et centralisés peuvent être falsifiés sans que personne sÕen aperçoive.

A moins que vous ne soyez prêts à investir lourdement dans le design dÕun architecture propre
sécurisés contenant de multiples couches de contrôle et des audits réguliers (comme le font les
banques traditionnellement) vous devriez faire très attention avant de sortir les fonds du contexte de
sécurité décentralisé offert par bitcoin.  Même si vous avez les moyens et la discipline nécessaires pour
implémenter un modèle de sécurité robuste, une telle architecture reproduit le modèle fragile des
réseaux financiers traditionnels qui sont empoisonnés par des problèmes récurrent dÕusurpation
dÕidentité, de corruption et de détournements. Pour profiter du modèle de sécurité décentralisé unique
de Bitcoin, vous devez fuir la tentation dÕarchitecture centralisées qui malgré le fait quÕelle vous soit
plus familières pervertissent la sécurité de bitcoin au final.

La racine de confiance

LÕarchitecture de sécurité traditionnelle est basée sur le concept de racine de confiance, qui est un coeur
de confiance utilisé comme fondation de la sécurité pour tout système ou application. LÕarchitecture de
sécurité est développée autour de cette racine de confiance comme une série de cercles concentriques,
comme les couches dÕun oignon, étendant la confiance en sÕéloignant de son centre. Chaque couche de
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construit au dessus dÕune couche interne offrant plus de confiance en utilisant les contrôles dÕaccès, les
signature numériques, le cryptage et dÕautres principes de sécurité. Comme les système logiciels
deviennent plus complexes, ils deviennent de fait plus sujets aux bugs qui peuvent eux mêmes
engendrer des failles de sécurité. Au final plus un système devient complexe, plus il est difficile de le
sécuriser. Le concept de la racine de confiance permet de sÕassurer que la confiance est placée au sein
de la partie la moins complexe du système, et donc la moins vulnérable, tandis que les parties plus
complexes prennent place au sein des couches supérieures qui lÕentourent. LÕarchitecture de sécurité
est répétée à différente échelle, établissant en premier lieu une racine de confiance au niveau
hardware pour ensuite lÕélargir au niveau du système dÕexploitation, sÕétablir ensuite dans les couches
de services de haut niveau, pour finalement se retrouver dans les différents serveurs formant des
cercles concentrique de confiance allant en décroissant.

LÕarchitecture de sécurité de Bitcoin est différente. Avec Bitcoin, le système de consensus est à lÕorigine
de la création dÕun registre public qui est complètement décentralisé. Une blockchain correctement
validée utilise le genesis block comme racine de confiance, et construit une chaîne de confiance
jusquÕau bloc actuel. Les systèmes Bitcoin peuvent et se doivent dÕutiliser la blockchain comme racine
de confiance. Lors du design dÕune application bitcoin complexe composée de services tournant sur
des systèmes différents, vous devez examiner attentivement lÕarchitecture de sécurité afin de bien
vous assurer de lÕendroit où vous placez la confiance. En fin de compte, la seule chose à laquelle vous
devez explicitement accorder votre confiance est une blockchain entièrement validé. Si votre
application place la confiance ailleurs que dans la blockchain, cela doit être fait avec précaution car
cela introduit de la vulnérabilité. Une bonne méthode pour évaluer lÕarchitecture de votre application
est de considérer chacun de ses composants et dÕévaluer un scénario hypothétique ou ce composant est
complètement compromis et sous le contrôle dÕun acteur malveillant. Prenez chaque composant de
votre application, lÕun après lÕautre, et évaluez les impacts globaux sur la sécurité si ce composant se
trouve compromis. Si votre application se trouve ne plus être sécurisée lorsquÕun de ses composants
est compromis, cela  démontre que vous avez malencontreusement placé de la confiance au sein de ce
composant. Une application bitcoin sans vulnérabilités ne devrait être vulnérable que si le mécanisme
de consensus bitcoin lui-même est compromis, cela signifierait que sa racine de confiance est basée sur
la partie la plus forte de lÕarchitecture de sécurité bitcoin.

Les nombreux exemples dÕéchanges bitcoin piratés servent à souligner ce point car leur architecture
de sécurité et leur design ne supportent pas un examen des plus basiques. Ces implémentations
centralisées ont placé la confiance explicitement dans plusieurs composants en dehors de la
blockchain, tels que dans des hot wallets, des registres centralisés dans des base de données, des clés
de cryptage vulnérable ou dÕautres composants similaires.

Bonnes pratiques de sécurité
LÕHomme utilise de contrôles de sécurité physiques depuis des milliers dÕannées. En comparaison,
notre expérience dans la sécurité numérique est de moins de 50 ans. Les systèmes dÕexploitation
modernes ne sont pas très sécurisés et pas particulièrement adaptés au stockage dÕargent numérique.
Nos ordinateurs sont continuellement exposés à des menaces extérieures via des connexions
permanentes à Internet. Ils font tourner des milliers de composants logiciels écrits par des centaines
dÕauteurs différents, qui ont souvent un accès illimité aux fichiers de lÕutilisateur. Un seul petit bout de
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code, parmi les milliers installés sur votre ordinateur,peut compromettre votre clavier et vos fichiers,
et voler les bitcoins contenus dans vos porte-monnaies. Le niveau de compétence en maintenance
informatique requis pour garder votre ordinateur sans virus nÕest possédé que par une petite minorité
dÕutilisateurs.

Malgré les dizaines dÕannées de recherche en sécurité informatique, les biens numériques sont
toujours vulnérables faces à un adversaire déterminé. Même les systèmes hautement protégés et
restreints, tels que ceux des entreprises financières, des agences de sécurité nationales ou des
organismes de défense, sont fréquemment déjoués. Bitcoin crées des biens numériques ayant une
valeur intrinsèque qui peuvent être volés et détournés de leurs nouveaux propriétaires
instantanément et de manière irrévocable. Cela encourage grandement les hackers. JusquÕà présente,
les hackers devaient convertir des informations dÕidentité ou des informations de comptes Ñtels que
les cartes de crédits et les comptes bancairesÑ en valeur après les avoir compromis. En dépit de la
difficulté de recel et de blanchiment des données financières, nous avons pu remarquer une escalade
dans le nombre de vols.

Heureusement, bitcoin encourage aussi dÕune certaine manière lÕamélioration de la sécurité des
ordinateurs. Alors que les risques de compromission précédents étaient vagues et indirects, bitcoin
rend ces risques clairs et évidents. Garder des bitcoins sur un ordinateur à pour résultat de mettre
dans lÕesprit de lÕutilisateur le besoin de sécurité accru. Avec la prolifération et lÕadoption sans cesse
grandissante de bitcoin et des autres crypto-monnaies, nous avons vu apparaitre des moyens de plus
en plus sophistiqués de hacking et avec eux de nouvelles solutions de sécurité. En dÕautres termes, les
hackers disposent maintenant dÕune nouvelle cible juteuse et les utilisateurs possèdent désormais une
vraie raison de se défendre en assurant la sécurité de leurs systèmes.

Durant ces trois dernières années, conséquemment à lÕadoption du bitcoin, nous avons vus une grande
innovation dans le domaine de la sécurité informatique qui a pris la forme du cryptage matériel, du
stockage des clés, des porte-monnaies physiques, de la technologie multi-signature et des séquestres
numériques. Dans les sections suivantes nous examineront plusieurs bonnes pratiques pour assurer la
sécurité des utilisateurs.

Stockage physique de bitcoins

Parce que la plupart des utilisateur sont beaucoup plus à lÕaise avec la sécurisation physique, une
méthode très efficace pour sécuriser les bitcoins consiste à les convertir dans une forme physique. Les
clés bitcoin ne sont rien dÕautres que des grands nombres. Cela veut dire quÕelles peuvent être stockées
sous forme physique, par exemple imprimées sur du papier ou gravées dans une pièce de métal.
Sécuriser les clés revient dans ce cas à simplement sécuriser la copie physique des clés bitcoin. Un
ensemble de clés bitcoin imprimées sur du papier est appellé "paper wallet" ou porte-monnaie papier,
et il existe beaucoup dÕoutils gratuits permettant de les créer. Je conserve personnellement la majorité
(99% ou plus)  de mes bitcoins sur des porte monnaie papier cryptés avec BIP0038, avec de multiples
copies conservées dans des coffres. Le fait de garder ses bitcoins hors ligne est désigné par le terme
"cold starage" (littéralement "stockage à froid") et est considéré comme la technique de sécurisation la
plus efficace. Un système de cold storage consiste en la génération des clés sur un système déconnecté
(qui nÕest jamais connecté à internet) et stocké hors ligne soit sur du papier, soit sur un support
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numérique te quÕune clé USB.

Les Hardware Wallets

Sur le long terme, la sécurité bitcoin prendra peu a peu la forme de porte-monnaies physiques
inviolable. Contrairement à un smartphone ou un ordinateur de bureau, un porte-monnaie physique
nÕa quÕun seul rôle : sécuriser des bitcoins. Sans aucun logiciel capable de le compromettre et une
interface limitée, les hardware wallets peuvent fournir un niveau de sécurité quasi infaillible pour les
utilisateurs non experts. Je mÕattends à voir les hardware wallets devenir la méthode prédominante de
stockage de bitcoin.  Trezor est un exemple de hardware wallet disponible sur le marché.

Equilibrer le risque

Bien que la plupart des utilisateurs ne craignent que le vol de bitcoin, il existe un risque encore plus
grand. Les fichiers de données sont très souvent perdus. Si ils contiennent des bitcoins, cette perte est
dÕautant plus douloureuse. Dans un effort de sécurisation de leur porte-monnaie bitcoin, les
utilisateurs doivent faire très attention à ne pas aller trop loin et finir par perdre leurs bitcoins. En
Juillet 2011, un projet de sensibilisation et dÕéducation au bitcoin à perdu près de 7000 bitcoins. Dans
leur effort dÕempêcher tout vol, les propriétaires ont implémenté une série complexe de sauvegardes
cryptées. Au final il ont accidentellement perdu les clés de cryptage, rendant les sauvegarde
inutilisables avec comme résultat le perte dÕune petite fortune. Comme les fait de cacher de lÕargent en
lÕenterrant dans le désert, si vous sécurisez trop vos bitcoins il est possible que vous ne les retrouviez
plus vous-même.

Diversification du risque

Est-ce que vous transporteriez la totalité de votre argent en cash dans votre porte-feuille ? Beaucoup de
gens considéreraient cela comme une folie, pourtant, les utilisateurs bitcoin gardent souvent tous leurs
bitcoin dans un unique wallet. Il vaut mieux à la place, disperser le risque dans de multiples wallets
bitcoin. Les utilisateur prudents ne garderont quÕune petite portion de leur bitcoins, peut-être moins
de 5%, dans un porte-monnaie web ou mobile comme "argent de poche". Le reste doit être séparé entre
plusieurs moyens de stockage différents tels que des portemonnaies sur ordinateur ou hors-ligne
(stockage à froid).

Multi-sig et Gouvernance

Quand une entreprise ou un individu stocke de grands montants de bitcoin, ils doivent considérer
lÕoption dÕadresses bitcoin multi-signature. Les adresses multi-signature sécurisent les fonds et
nécessitant plus dÕune signature pour effectuer un paiement. Les clés doivent être stockées dans
plusieurs endroits et sous le contrôle de personnes différentes. Dans une entreprise par exemple, les
clés doivent être générées indépendamment et gardées par plusieurs dirigeants, pour sÕassurer quÕune
personne seule ne puisse compromettre les fonds. Les adresses multi-signature peuvent également
permettre la redondance, quand une seule personne possède différentes clés qui sont stockées dans
différents endroits.
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Survie

Un autre aspect de la sécurité souvent négligé est la disponibilité des bitcoins, particulièrement dans
un contexte dÕincapacité ou de décès du possesseur des clés. Les utilisateurs bitcoin sont encouragés à
utiliser des mots de passe complexes et à garder leurs clés secrètes, sans les faire connaitre à
quiconque. Malheureusement, dans la pratique, cela rend quasiment impossible pour la famille dÕun
utilisateur de récupérer les fonds si le possesseur nÕest plus là pour les déverrouiller. Dans la plupart
des cas, les familles des possesseurs de bitcoin ne sont tout simplement pas au courant de lÕexistence
de fonds en bitcoins.

Si vous possédez beaucoup de bitcoins, vous devriez considérer le partage de lÕaccès à ces bitcoin à un
proche de confiance ou un avocat. Un dispositif plus complexe de survie peut être la mise en place dÕun
accès multi-signature et dÕune planning de succession au travers dÕun avocat spécialisé qui fera office
d'"exécutant testamentaire numérique".

Conclusion
Bitcoin est un technologie nouvelle, sans précédent et complexe. Avec le temps nous développerons de
meilleurs outils de sécurité et des pratiques plus accessibles aux non-experts. Pour lÕinstant les
utilisateurs bitcoin peuvent utiliser les conseils prônés ici pour profiter dÕune expérience bitcoin sûre
et sans problèmes.
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Appendix A: Commandes de lÕexplorateur
Bitcoin (bx)

Usage: bx COMMANDE [--help]

Info: Les commandes bx sont:

address-decode
address-embed
address-encode
address-validate
base16-decode
base16-encode
base58-decode
base58-encode
base58check-decode
base58check-encode
base64-decode
base64-encode
bitcoin160
bitcoin256
btc-to-satoshi
ec-add
ec-add-secrets
ec-multiply
ec-multiply-secrets
ec-new
ec-to-address
ec-to-public
ec-to-wif
fetch-balance
fetch-header
fetch-height
fetch-history
fetch-stealth
fetch-tx
fetch-tx-index
hd-new
hd-private
hd-public
hd-to-address
hd-to-ec
hd-to-public
hd-to-wif
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help
input-set
input-sign
input-validate
message-sign
message-validate
mnemonic-decode
mnemonic-encode
ripemd160
satoshi-to-btc
script-decode
script-encode
script-to-address
seed
send-tx
send-tx-node
send-tx-p2p
settings
sha160
sha256
sha512
stealth-decode
stealth-encode
stealth-public
stealth-secret
stealth-shared
tx-decode
tx-encode
uri-decode
uri-encode
validate-tx
watch-address
wif-to-ec
wif-to-public
wrap-decode
wrap-encode

Pour plus dÕinformations, rendez vous sur the la page dÕaccueil Bitcoin explorer et le manuel
utilisateur de Bitcoin Explorer.

Exemples de commande bx utilisé
Regardons quelques exemples de commandes Bitcoin Explorer pour expérimenter avec les clés et
adresses:

Generate a random "seed" value using the seed command, which uses the operating systemÕs random
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number generator. Pass the seed to the ec-new command to generate a new private key. We save the
standard output into the file private_key:

$ bx seed | bx ec-new > private_key
$ cat private_key
73096ed11ab9f1db6135857958ece7d73ea7c30862145bcc4bbc7649075de474

Now, generate the public key from that private key using the ec-to-public command. We pass the
private_key file into the standard input and save the standard output of the command into a new file
public_key:

$ bx ec-to-public < private_key > public_key
$ cat public_key
02fca46a6006a62dfdd2dbb2149359d0d97a04f430f12a7626dd409256c12be500

We can reformat the public_key as an address using the ec-to-address command. We pass the
public_key into standard input:

$ bx ec-to-address < public_key
17re1S4Q8ZHyCP8Kw7xQad1Lr6XUzWUnkG

Keys generated in this manner produce a type-0 nondeterministic wallet. That means that each key is
generated from an independent seed. Bitcoin Explorer commands can also generate keys
deterministically, in accordance with BIP0032. In this case, a "master" key is created from a seed and
then extended deterministically to produce a tree of subkeys, resulting in a type-2 deterministic wallet.

First, we we use the seed and hd-new commands to generate a master key that will be used as the basis
to derive a hierarchy of keys.

$ bx seed > seed
$ cat seed
eb68ee9f3df6bd4441a9feadec179ff1

$ bx hd-new < seed > master
$ cat master
xprv9s21ZrQH143K2BEhMYpNQoUvAgiEjArAVaZaCTgsaGe6LsAnwubeiTcDzd23mAoyizm9cApe51gNfLMkBqkYo
WWMCRwzfuJk8RwF1SVEpAQ

We now use the hd-private command to generate a hardened "account" key and a sequence of two
private keys within the account.
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$ bx hd-private --hard < master > account
$ cat account
xprv9vkDLt81dTKjwHB8fsVB5QK8cGnzveChzSrtCfvu3aMWvQaThp59ueufuyQ8Qi3qpjk4aKsbmbfxwcgS8PYbg
oR2NWHeLyvg4DhoEE68A1n

$ bx hd-private --index 0 < account
xprv9xHfb6w1vX9xgZyPNXVgAhPxSsEkeRcPHEUV5iJcVEsuUEACvR3NRY3fpGhcnBiDbvG4LgndirDsia1e9F3DW
PkX7Tp1V1u97HKG1FJwUpU

$ bx hd-private --index 1 < account
xprv9xHfb6w1vX9xjc8XbN4GN86jzNAZ6xHEqYxzbLB4fzHFd6VqCLPGRZFsdjsuMVERadbgDbziCRJru9n6tzEWr
ASVpEdrZrFidt1RDfn4yA3

Next we use the hd-public command to generate the corresponding sequence of two public keys.

$ bx hd-public --index 0 < account
xpub6BH1zcTuktiFu43rUZ2gXqLgzu5F3tLEeTQ5t6iE3aQtM2VMTxMcyLN9fYHiGhGpQe9QQYmqL2eYPFJ3vezHz
5wzaSW4FiGrseNDR4LKqTy

$ bx hd-public --index 1 < account
xpub6BH1zcTuktiFx6CzhPbGjG3UYQ13WR16CmtbPiagEKpEVtpyjshWyMaMV1cn7nUPUkgQHPVXJVqsrA8xWbGQD
hohEcDFTEYMvYzwRD7Juf8

The public keys can also be derived from their corresponding private keys using the hd-to-public
command.

$ bx hd-private --index 0 < account | bx hd-to-public
xpub6BH1zcTuktiFu43rUZ2gXqLgzu5F3tLEeTQ5t6iE3aQtM2VMTxMcyLN9fYHiGhGpQe9QQYmqL2eYPFJ3vezHz
5wzaSW4FiGrseNDR4LKqTy

$ bx hd-private --index 1 < account | bx hd-to-public
xpub6BH1zcTuktiFx6CzhPbGjG3UYQ13WR16CmtbPiagEKpEVtpyjshWyMaMV1cn7nUPUkgQHPVXJVqsrA8xWbGQD
hohEcDFTEYMvYzwRD7Juf8

We can generate a practically limitless number of keys in a deterministic chain, all derived from a
single seed. This technique is used in many wallet applications to generate keys that can be backed up
and restored with a single seed value. This is easier than having to back up the wallet with all its
randomly generated keys every time a new key is created.

The seed can be encoded using the mnemonic-encode command.
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$ bx hd-mnemonic < seed > words
adore repeat vision worst especially veil inch woman cast recall dwell appreciate

The seed can then be decoded using the mnemonic-decode command.

$ bx mnemonic-decode < words
eb68ee9f3df6bd4441a9feadec179ff1

Mnemonic encoding can make the seed easier to record and even remember.
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Propositions dÕAmélioration du Bitcoin
(Bitcoin Improvement Proposals ou BIP en
anglais)
Les propositions dÕamélioration du Bitcoin constitue un dossier de conception qui a pour but de
fournir des informations à la communauté Bitcoin ou de décrire au fur et à mesure une fonctionnalité
relative au Bitcoin, à ses différents processus ainsi quÕà son environnement.

Conformément à lÕobjet et aux principes directeurs du BIP0001_BIP_, il existe trois types de
propositions ou BIP :

_La_BIP _standard

Concerne les changements qui affectent la plupart ou toutes les implémentations de bitcoin, comme
une modification du protocole de communication, des règles de validité des blocs ou des
transactions, ou encore tout changement ou ajout qui impacte lÕinteropérabilité des applications
utilisant le bitcoin.

_La_BIP _informationnelle

Décrit un problème dans la conception du Bitcoin, ou bien donne des consignes générales ainsi que
des informations à la communauté Bitcoin, sans proposer de nouvelle fonctionnalité. Les BIPs
informationnelles ne représentent pas nécessairement un consensus ou une recommandation de la
communauté ; ce qui, par conséquent, laisse le choix aux utilisateurs et aux développeurs de les
ignorer ou de sÕy conformer.

_La_BIP_de_processus

Décrit un processus Bitcoin, ou propose une modification (ou un évènement) au niveau dÕun
processus. Les BIPs de type processus ressemblent aux BIPs standards, mais ne concernent pas le
protocole Bitcoin lui-même. Elles peuvent proposer une implémentation, mais pas dans le codebase
de Bitcoin. Elles nécessitent souvent un consensus communautaire et, contrairement aux BIPs
informationnelles, elles valent plus que de simples recommandations, dÕautant plus les utilisateurs
ne sont pas libres de les ignorer en général. Procédures, consignes, changements dans le processus
décisionnel, modifications apportées aux outils ou à lÕenvironnement relatif au développement du
Bitcoin. NÕimporte quelle métadonnée est considérée comme une BIP de processus.

Les propositions dÕamélioration du Bitcoin sont enregistrées dans un répertoire versionné au GitHub.
Le tableau Aperçu des BIPs montre un aperçu des BIPs datant de lÕautomne 2014. Consultez le
répertoire officiel pour une mise à jour sur les BIPs existantes et sur leur contenu.

Table 1. Aperçu des BIPs
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BIP# Lien Titre Auteur Type Statut

1 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0001.mediawik
i

BIP Purpose
and Guidelines

Amir Taaki Standard Active

10 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0010.mediawik
i

Multi-Sig
Transaction
Distribution

Alan Reiner Informationnel
le

Brouillon

11 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0011.mediawik
i

M-of-N
Standard
Transactions

Gavin
Andresen

Standard Acceptée

12 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0012.mediawik
i

OP_EVAL Gavin
Andresen

Standard Supprimée

13 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0013.mediawik
i

Address
Format for
pay-to-script-
hash

Gavin
Andresen

Standard Final

14 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0014.mediawik
i

Protocol
Version and
User Agent

Amir Taaki,
Patrick
Strateman

Standard Acceptée

15 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0015.mediawik
i

Aliases Amir Taaki Standard Supprimée
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BIP# Lien Titre Auteur Type Statut

16 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0016.mediawik
i

Pay To Script
Hash

Gavin
Andresen

Standard Acceptée

17 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0017.mediawik
i

OP_CHECKHAS
HVERIFY (CHV)

Luke Dashjr Supprimée Brouillon

18 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0018.mediawik
ilink:

hashScriptChec
k

Luke Dashjr Standard Brouillon

19 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0019.mediawik
i

M-of-N
Standard
Transactions
(Low SigOp)

Luke Dashjr Standard Brouillon

20 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0020.mediawik
i

URI Scheme Luke Dashjr Standard Remplacée

21 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0021.mediawik
i

URI Scheme Nils Schneider,
Matt Corallo

Standard Acceptée

22 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0022.mediawik
i

getblocktempla
te -
Fundamentals

Luke Dashjr Standard Acceptée
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BIP# Lien Titre Auteur Type Statut

23 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0023.mediawik
i

getblocktempla
te - Pooled
Mining

Luke Dashjr Standard Acceptée

30 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0030.mediawik
i

Duplicate
transactions

Pieter Wuille Standard Acceptée

31 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0031.mediawik
i

Pong message Mike Hearn Standard Acceptée

32 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0032.mediawik
i

Hierarchical
Deterministic
Wallets

Pieter Wuille Informative Acceptée

33 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0033.mediawik
i

Stratized
Nodes

Amir Taaki Standard Brouillon

34 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0034.mediawik
i

Block v2,
Height in
coinbase

Gavin
Andresen

Standard Acceptée

35 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0035.mediawik
i

mempool
message

Jeff Garzik Standard Acceptée
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BIP# Lien Titre Auteur Type Statut

36 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0036.mediawik
i

Custom
Services

Stefan Thomas Standard Brouillon

37 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0037.mediawik
i

Bloom filtering Mike Hearn
and Matt
Corallo

Standard Acceptée

38 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0038.mediawik
i

Passphrase-
protected
private key

Mike Caldwell Standard Brouillon

39 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0039.mediawik
i

Mnemonic
code for
generating
deterministic
keys

Slush Standard Brouillon

40 Stratum wire
protocol

Slush Standard Numéro de BIP
attribué

41 Stratum
mining
protocol

Slush Standard Numéro de BIP
attribué

42 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0042.mediawik
i

A finite
monetary
supply for
bitcoin

Pieter Wuille Standard Brouillon

43 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0043.mediawik
i

Purpose Field
for
Deterministic
Wallets

Slush Standard Brouillon
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BIP# Lien Titre Auteur Type Statut

44 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0044.mediawik
i

Multi-Account
Hierarchy for
Deterministic
Wallets

Slush Standard Brouillon

50 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0050.mediawik
i

March 2013
Chain Fork
Post-Mortem

Gavin
Andresen

Informative Brouillon

60 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0060.mediawik
i

Fixed Length
"version"
Message
(Relay-
Transactions
Field)

Amir Taaki Standard Brouillon

61 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0061.mediawik
i

"reject" P2P
message

Gavin
Andresen

Standard Brouillon

62 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0062.mediawik
i

Dealing with
malleability

Pieter Wuille Standard Brouillon

63 Stealth
Addresses

Peter Todd Standard Numéro de BIP
attribué

64 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0064.mediawik
i

getutxos
message

Mike Hearn Standard Brouillon
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BIP# Lien Titre Auteur Type Statut

70 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0070.mediawik
i

Payment
protocol

Gavin
Andresen

Standard Brouillon

71 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0071.mediawik
i

Payment
protocol MIME
types

Gavin
Andresen

Standard Brouillon

72 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0072.mediawik
i

Payment
protocol URIs

Gavin
Andresen

Standard Brouillon

73 https://github.c
om/bitcoin/bip
s/blob/master/b
ip-
0073.mediawik
i

Use "Accept"
header with
Payment
Request URLs

Stephen Pair Standard Brouillon

7

https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0073.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0073.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0073.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0073.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0073.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0073.mediawiki


Appendix A: pycoin, ku, et tx
La librairie Python pycoin, écrite et maintenue au départ par Richard Kiss, est une librairie Python qui
supporte la manipulation de clés et de transactions bitcoin, son niveau de support du langage de script
permet même de traiter les transactions non standard.

La biblitothèque pycoin supporte à la fois Python 2 (2.7x) et Python 3 (après 3.3), et est fournie avec
certains utilitaires de ligne de commande pratiques, ku et TX.

Key Utility (KU)
LÕutilitaire en ligne de commande ku ("key utility") est un couteau suisse pour manipuler des clés. Il
supporte les clé BIP32, WIF et les adresses (bitcoin et alt coins). Voici quelques exemples.

Créer un clé BIP32 en utilisant les sources dÕentropie par défaut de GPG et de /dev/random:

1
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$ ku create

input           : create
network         : Bitcoin
wallet key      : xprv9s21ZrQH143K3LU5ctPZTBnb9kTjA5Su9DcWHvXJemiJBsY7VqXUG7hipgdWaU
Ê                   m2nhnzdvxJf5KJo9vjP2nABX65c5sFsWsV8oXcbpehtJi
public version  : xpub661MyMwAqRbcFpYYiuvZpKjKhnJDZYAkWSY76JvvD7FH4fsG3Nqiov2CfxzxY8
Ê                   DGcpfT56AMFeo8M8KPkFMfLUtvwjwb6WPv8rY65L2q8Hz
tree depth      : 0
fingerprint     : 9d9c6092
parent f'print  : 00000000
child index     : 0
chain code      : 80574fb260edaa4905bc86c9a47d30c697c50047ed466c0d4a5167f6821e8f3c
private key     : yes
secret exponent :
112471538590155650688604752840386134637231974546906847202389294096567806844862
Êhex            : f8a8a28b28a916e1043cc0aca52033a18a13cab1638d544006469bc171fddfbe
wif             : L5Z54xi6qJusQT42JHA44mfPVZGjyb4XBRWfxAzUWwRiGx1kV4sP
Êuncompressed   : 5KhoEavGNNH4GHKoy2Ptu4KfdNp4r56L5B5un8FP6RZnbsz5Nmb
public pair x   :
76460638240546478364843397478278468101877117767873462127021560368290114016034
public pair y   :
59807879657469774102040120298272207730921291736633247737077406753676825777701
Êx as hex       : a90b3008792432060fa04365941e09a8e4adf928bdbdb9dad41131274e379322
Êy as hex       : 843a0f6ed9c0eb1962c74533795406914fe3f1957c5238951f4fe245a4fcd625
y parity        : odd
key pair as sec : 03a90b3008792432060fa04365941e09a8e4adf928bdbdb9dad41131274e379322
Êuncompressed   : 04a90b3008792432060fa04365941e09a8e4adf928bdbdb9dad41131274e379322
Ê                   843a0f6ed9c0eb1962c74533795406914fe3f1957c5238951f4fe245a4fcd625
hash160         : 9d9c609247174ae323acfc96c852753fe3c8819d
Êuncompressed   : 8870d869800c9b91ce1eb460f4c60540f87c15d7
Bitcoin address : 1FNNRQ5fSv1wBi5gyfVBs2rkNheMGt86sp
Êuncompressed   : 1DSS5isnH4FsVaLVjeVXewVSpfqktdiQAM

Créer un clé BIP32 à partir dÕune phrase secrète

WARNING La phrase secrète dans cet exemple est trop facile à deviner
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$ ku P:foo

input           : P:foo
network         : Bitcoin
wallet key      : xprv9s21ZrQH143K31AgNK5pyVvW23gHnkBq2wh5aEk6g1s496M8ZMjxncCKZKgb5j
Ê                   ZoY5eSJMJ2Vbyvi2hbmQnCuHBujZ2WXGTux1X2k9Krdtq
public version  : xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWoQayvtS
Ê                   VYFvXz2vPPpbXE1qpjoUFidhjFj82pVShWu9curWmb2zy
tree depth      : 0
fingerprint     : 5d353a2e
parent f'print  : 00000000
child index     : 0
chain code      : 5eeb1023fd6dd1ae52a005ce0e73420821e1d90e08be980a85e9111fd7646bbc
private key     : yes
secret exponent :
65825730547097305716057160437970790220123864299761908948746835886007793998275
Êhex            : 91880b0e3017ba586b735fe7d04f1790f3c46b818a2151fb2def5f14dd2fd9c3
wif             : L26c3H6jEPVSqAr1usXUp9qtQJw6NHgApq6Ls4ncyqtsvcq2MwKH
Êuncompressed   : 5JvNzA5vXDoKYJdw8SwwLHxUxaWvn9mDea6k1vRPCX7KLUVWa7W
public pair x   :
81821982719381104061777349269130419024493616650993589394553404347774393168191
public pair y   :
58994218069605424278320703250689780154785099509277691723126325051200459038290
Êx as hex       : b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f
Êy as hex       : 826d8b4d3010aea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52
y parity        : even
key pair as sec : 02b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f
Êuncompressed   : 04b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f
Ê                   826d8b4d3010aea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52
hash160         : 5d353a2ecdb262477172852d57a3f11de0c19286
Êuncompressed   : e5bd3a7e6cb62b4c820e51200fb1c148d79e67da
Bitcoin address : 19Vqc8uLTfUonmxUEZac7fz1M5c5ZZbAii
Êuncompressed   : 1MwkRkogzBRMehBntgcq2aJhXCXStJTXHT

Récupérer les informations en JSON

$ ku P:foo -P -j
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{
Ê  "y_parity": "even",
Ê  "public_pair_y_hex":
"826d8b4d3010aea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52",
Ê  "private_key": "no",
Ê  "parent_fingerprint": "00000000",
Ê  "tree_depth": "0",
Ê  "network": "Bitcoin",
Ê  "btc_address_uncompressed": "1MwkRkogzBRMehBntgcq2aJhXCXStJTXHT",
Ê  "key_pair_as_sec_uncompressed":
"04b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f826d8b4d3010aea16ff4c1
c1d3ae68541d9a04df54a2c48cc241c2983544de52",
Ê  "public_pair_x_hex":
"b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f",
Ê  "wallet_key":
"xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWoQayvtSVYFvXz2vPPpbXE1qpjoUFi
dhjFj82pVShWu9curWmb2zy",
Ê  "chain_code": "5eeb1023fd6dd1ae52a005ce0e73420821e1d90e08be980a85e9111fd7646bbc",
Ê  "child_index": "0",
Ê  "hash160_uncompressed": "e5bd3a7e6cb62b4c820e51200fb1c148d79e67da",
Ê  "btc_address": "19Vqc8uLTfUonmxUEZac7fz1M5c5ZZbAii",
Ê  "fingerprint": "5d353a2e",
Ê  "hash160": "5d353a2ecdb262477172852d57a3f11de0c19286",
Ê  "input": "P:foo",
Ê  "public_pair_x":
"81821982719381104061777349269130419024493616650993589394553404347774393168191",
Ê  "public_pair_y":
"58994218069605424278320703250689780154785099509277691723126325051200459038290",
Ê  "key_pair_as_sec":
"02b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f"
}

Clé publique BIP32:

$ ku -w -P P:foo
xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWoQayvtSVYFvXz2vPPpbXE1qpjoUFid
hjFj82pVShWu9curWmb2zy

Générer une sous-clé:
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$ ku -w -s3/2 P:foo
xprv9wTErTSkjVyJa1v4cUTFMFkWMe5eu8ErbQcs9xajnsUzCBT7ykHAwdrxvG3g3f6BFk7ms5hHBvmbdutNmyg6i
ogWKxx6mefEw4M8EroLgKj

Sous-clé endurcie:

$ ku -w -s3/2H P:foo
xprv9wTErTSu5AWGkDeUPmqBcbZWX1xq85ZNX9iQRQW9DXwygFp7iRGJo79dsVctcsCHsnZ3XU3DhsuaGZbDh8iDk
BN45k67UKsJUXM1JfRCdn1

WIF:

$ ku -W P:foo
L26c3H6jEPVSqAr1usXUp9qtQJw6NHgApq6Ls4ncyqtsvcq2MwKH

Adresse:

$ ku -a P:foo
19Vqc8uLTfUonmxUEZac7fz1M5c5ZZbAii

Générer un groupe de sous-clés:

$ ku P:foo -s 0/0-5 -w
xprv9xWkBDfyBXmZjBG9EiXBpy67KK72fphUp9utJokEBFtjsjiuKUUDF5V3TU8U8cDzytqYnSekc8bYuJS8G3bhX
xKWB89Ggn2dzLcoJsuEdRK
xprv9xWkBDfyBXmZnzKf3bAGifK593gT7WJZPnYAmvc77gUQVej5QHckc5Adtwxa28ACmANi9XhCrRvtFqQcUxt8r
UgFz3souMiDdWxJDZnQxzx
xprv9xWkBDfyBXmZqdXA8y4SWqfBdy71gSW9sjx9JpCiJEiBwSMQyRxan6srXUPBtj3PTxQFkZJAiwoUpmvtrxKZu
4zfsnr3pqyy2vthpkwuoVq
xprv9xWkBDfyBXmZsA85GyWj9uYPyoQv826YAadKWMaaEosNrFBKgj2TqWuiWY3zuqxYGpHfv9cnGj5P7e8EskpzK
L1Y8Gk9aX6QbryA5raK73p
xprv9xWkBDfyBXmZv2q3N66hhZ8DAcEnQDnXML1J62krJAcf7Xb1HJwuW2VMJQrCofY2jtFXdiEY8UsRNJfqK6DAd
yZXoMvtaLHyWQx3FS4A9zw
xprv9xWkBDfyBXmZw4jEYXUHYc9fT25k9irP87n2RqfJ5bqbjKdT84Mm7Wtc2xmzFuKg7iYf7XFHKkSsaYKWKJbR5
4bnyAD9GzjUYbAYTtN4ruo
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Générer lÕadresse correspondante:

$ ku P:foo -s 0/0-5 -a
1MrjE78H1R1rqdFrmkjdHnPUdLCJALbv3x
1AnYyVEcuqeoVzH96zj1eYKwoWfwte2pxu
1GXr1kZfxE1FcK6ZRD5sqqqs5YfvuzA1Lb
116AXZc4bDVQrqmcinzu4aaPdrYqvuiBEK
1Cz2rTLjRM6pMnxPNrRKp9ZSvRtj5dDUML
1WstdwPnU6HEUPme1DQayN9nm6j7nDVEM

Générer les WIFs correspondants:

$ ku P:foo -s 0/0-5 -W
L5a4iE5k9gcJKGqX3FWmxzBYQc29PvZ6pgBaePLVqT5YByEnBomx
Kyjgne6GZwPGB6G6kJEhoPbmyjMP7D5d3zRbHVjwcq4iQXD9QqKQ
L4B3ygQxK6zH2NQGxLDee2H9v4Lvwg14cLJW7QwWPzCtKHdWMaQz
L2L2PZdorybUqkPjrmhem4Ax5EJvP7ijmxbNoQKnmTDMrqemY8UF
L2oD6vA4TUyqPF8QG4vhUFSgwCyuuvFZ3v8SKHYFDwkbM765Nrfd
KzChTbc3kZFxUSJ3Kt54cxsogeFAD9CCM4zGB22si8nfKcThQn8C

Vérifier si cela fonctionne en choississant une chaîne BIP32 (celle correspondant à la sous-clé 0/3):

$ ku -W
xprv9xWkBDfyBXmZsA85GyWj9uYPyoQv826YAadKWMaaEosNrFBKgj2TqWuiWY3zuqxYGpHfv9cnGj5P7e8EskpzK
L1Y8Gk9aX6QbryA5raK73p
L2L2PZdorybUqkPjrmhem4Ax5EJvP7ijmxbNoQKnmTDMrqemY8UF
$ ku -a
xprv9xWkBDfyBXmZsA85GyWj9uYPyoQv826YAadKWMaaEosNrFBKgj2TqWuiWY3zuqxYGpHfv9cnGj5P7e8EskpzK
L1Y8Gk9aX6QbryA5raK73p
116AXZc4bDVQrqmcinzu4aaPdrYqvuiBEK

Ouais, cela semble familier.

De lÕexposant secret :
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$ ku 1

input           : 1
network         : Bitcoin
secret exponent : 1
Êhex            : 1
wif             : KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU73sVHnoWn
Êuncompressed   : 5HpHagT65TZzG1PH3CSu63k8DbpvD8s5ip4nEB3kEsreAnchuDf
public pair x   :
55066263022277343669578718895168534326250603453777594175500187360389116729240
public pair y   :
32670510020758816978083085130507043184471273380659243275938904335757337482424
Êx as hex       : 79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Êy as hex       : 483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
y parity        : even
key pair as sec : 0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Êuncompressed   : 0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Ê                   483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
hash160         : 751e76e8199196d454941c45d1b3a323f1433bd6
Êuncompressed   : 91b24bf9f5288532960ac687abb035127b1d28a5
Bitcoin address : 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH
Êuncompressed   : 1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm

Version de Litecoin:
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$ ku -nL 1

input            : 1
network          : Litecoin
secret exponent  : 1
Êhex             : 1
wif              : T33ydQRKp4FCW5LCLLUB7deioUMoveiwekdwUwyfRDeGZm76aUjV
Êuncompressed    : 6u823ozcyt2rjPH8Z2ErsSXJB5PPQwK7VVTwwN4mxLBFrao69XQ
public pair x    :
55066263022277343669578718895168534326250603453777594175500187360389116729240
public pair y    :
32670510020758816978083085130507043184471273380659243275938904335757337482424
Êx as hex        : 79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Êy as hex        : 483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
y parity         : even
key pair as sec  : 0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Êuncompressed    : 0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Ê                    483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
hash160          : 751e76e8199196d454941c45d1b3a323f1433bd6
Êuncompressed    : 91b24bf9f5288532960ac687abb035127b1d28a5
Litecoin address : LVuDpNCSSj6pQ7t9Pv6d6sUkLKoqDEVUnJ
Êuncompressed    : LYWKqJhtPeGyBAw7WC8R3F7ovxtzAiubdM

Dogecoin WIF:

$ ku -nD -W 1
QNcdLVw8fHkixm6NNyN6nVwxKek4u7qrioRbQmjxac5TVoTtZuot

De la public pair (sur le Testnet) :
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$ ku -nT
55066263022277343669578718895168534326250603453777594175500187360389116729240,even

input                   :
550662630222773436695787188951685343262506034537775941755001873603
Ê                           89116729240,even
network                 : Bitcoin testnet
public pair x           :
55066263022277343669578718895168534326250603453777594175500187360389116729240
public pair y           :
32670510020758816978083085130507043184471273380659243275938904335757337482424
Êx as hex               :
79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Êy as hex               :
483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
y parity                : even
key pair as sec         :
0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Êuncompressed           :
0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Ê
483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
hash160                 : 751e76e8199196d454941c45d1b3a323f1433bd6
Êuncompressed           : 91b24bf9f5288532960ac687abb035127b1d28a5
Bitcoin testnet address : mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r
Êuncompressed           : mtoKs9V381UAhUia3d7Vb9GNak8Qvmcsme

Ë partir du hash160 :

$ ku 751e76e8199196d454941c45d1b3a323f1433bd6

input           : 751e76e8199196d454941c45d1b3a323f1433bd6
network         : Bitcoin
hash160         : 751e76e8199196d454941c45d1b3a323f1433bd6
Bitcoin address : 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH

Comme une adresse Dogecoin:
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$ ku -nD 751e76e8199196d454941c45d1b3a323f1433bd6

input            : 751e76e8199196d454941c45d1b3a323f1433bd6
network          : Dogecoin
hash160          : 751e76e8199196d454941c45d1b3a323f1433bd6
Dogecoin address : DFpN6QqFfUm3gKNaxN6tNcab1FArL9cZLE

Transaction Utility (TX)

LÕutilitaire en ligne de commande tx affichera des transactions lisibles par un humain, cherchera les
transactions de bases de la cache de transactions de pycoin ou des services web (blockchain.info,
blockr.io et biteasy.com sont actuellement pris en charge), fusionnera les transactions, ajoutera ou
supprimera les entreés et sorties, et signera les transactions.

Voici quelques exemples

Voir la fameuse transaction "pizza" [PIZZA]:

$ tx 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
warning: consider setting environment variable PYCOIN_CACHE_DIR=~/.pycoin_cache to
cache transactions fetched via web services
warning: no service providers found for get_tx; consider setting environment variable
PYCOIN_SERVICE_PROVIDERS=BLOCKR_IO:BLOCKCHAIN_INFO:BITEASY:BLOCKEXPLORER
usage: tx [-h] [-t TRANSACTION_VERSION] [-l LOCK_TIME] [-n NETWORK] [-a]
Ê         [-i address] [-f path-to-private-keys] [-g GPG_ARGUMENT]
Ê         [--remove-tx-in tx_in_index_to_delete]
Ê         [--remove-tx-out tx_out_index_to_delete] [-F transaction-fee] [-u]
Ê         [-b BITCOIND_URL] [-o path-to-output-file]
Ê         argument [argument ...]
tx: error: can't find Tx with id
49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a

Oops! Nous nÕavons pas mis en place les services web. Faisons cela maintenant:

$ PYCOIN_CACHE_DIR=~/.pycoin_cache
$ PYCOIN_SERVICE_PROVIDERS=BLOCKR_IO:BLOCKCHAIN_INFO:BITEASY:BLOCKEXPLORER
$ export PYCOIN_CACHE_DIR PYCOIN_SERVICE_PROVIDERS

Ce nÕest pas fait automatiquement de sorte quÕun outil en ligne de commande ne divulguera pas à une
site tiers les informations privées des transactions qui vous intéresse. Si vous ne vous en souciez pas,
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vous pouvez mettre ces lignes dans votre .profile.

Essayons de nouveau:

$ tx 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
Version:  1  tx hash 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
159 bytes
TxIn count: 1; TxOut count: 1
Lock time: 0 (valid anytime)
Input:
Ê 0:                          (unknown) from
1e133f7de73ac7d074e2746a3d6717dfc99ecaa8e9f9fade2cb8b0b20a5e0441:0
Output:
Ê 0: 1CZDM6oTttND6WPdt3D6bydo7DYKzd9Qik receives 10000000.00000 mBTC
Total output 10000000.00000 mBTC
including unspents in hex dump since transaction not fully signed
010000000141045e0ab2b0b82cdefaf9e9a8ca9ec9df17673d6a74e274d0c73ae77d3f131e000000004a4
93046022100a7f26eda874931999c90f87f01ff1ffc76bcd058fe16137e0e63fdb6a35c2d78022100a61e
9199238eb73f07c8f209504c84b80f03e30ed8169edd44f80ed17ddf451901ffffffff010010a5d4e8000
0001976a9147ec1003336542cae8bded8909cdd6b5e48ba0ab688ac00000000

** can't validate transaction as source transactions missing

La dernière ligne apparaît car pour valider les signatures des transactions, vous avez techniquement
besoin des transactions sources. Donc, ajoutons -a pour agrandir les transactions avec lÕinformation
source:
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$ tx -a 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
warning: transaction fees recommendations casually calculated and estimates may be
incorrect
warning: transaction fee lower than (casually calculated) expected value of 0.1 mBTC,
transaction might not propogate
Version:  1  tx hash 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
159 bytes
TxIn count: 1; TxOut count: 1
Lock time: 0 (valid anytime)
Input:
Ê 0: 17WFx2GQZUmh6Up2NDNCEDk3deYomdNCfk from
1e133f7de73ac7d074e2746a3d6717dfc99ecaa8e9f9fade2cb8b0b20a5e0441:0 10000000.00000
mBTC  sig ok
Output:
Ê 0: 1CZDM6oTttND6WPdt3D6bydo7DYKzd9Qik receives 10000000.00000 mBTC
Total input  10000000.00000 mBTC
Total output 10000000.00000 mBTC
Total fees        0.00000 mBTC

010000000141045e0ab2b0b82cdefaf9e9a8ca9ec9df17673d6a74e274d0c73ae77d3f131e000000004a4
93046022100a7f26eda874931999c90f87f01ff1ffc76bcd058fe16137e0e63fdb6a35c2d78022100a61e
9199238eb73f07c8f209504c84b80f03e30ed8169edd44f80ed17ddf451901ffffffff010010a5d4e8000
0001976a9147ec1003336542cae8bded8909cdd6b5e48ba0ab688ac00000000

all incoming transaction values validated

Regardons maintenant les sorties non dépensées pour une adresse spécifique (UTXO). Dans le bloc
numéro 1, nous voyons une transaction coinbase de 12c6DSiU4Rq3P4ZxziKxzrL5LmMBrzjrJX. Nous
pouvons fetch_unspent pour trouver tous les coins de cette adresse :
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$ fetch_unspent 12c6DSiU4Rq3P4ZxziKxzrL5LmMBrzjrJX
a3a6f902a51a2cbebede144e48a88c05e608c2cce28024041a5b9874013a1e2a/0/76a914119b098e2e98
0a229e139a9ed01a469e518e6f2688ac/333000
cea36d008badf5c7866894b191d3239de9582d89b6b452b596f1f1b76347f8cb/31/76a914119b098e2e9
80a229e139a9ed01a469e518e6f2688ac/10000
065ef6b1463f552f675622a5d1fd2c08d6324b4402049f68e767a719e2049e8d/86/76a914119b098e2e9
80a229e139a9ed01a469e518e6f2688ac/10000
a66dddd42f9f2491d3c336ce5527d45cc5c2163aaed3158f81dc054447f447a2/0/76a914119b098e2e98
0a229e139a9ed01a469e518e6f2688ac/10000
ffd901679de65d4398de90cefe68d2c3ef073c41f7e8dbec2fb5cd75fe71dfe7/0/76a914119b098e2e98
0a229e139a9ed01a469e518e6f2688ac/100
d658ab87cc053b8dbcfd4aa2717fd23cc3edfe90ec75351fadd6a0f7993b461d/5/76a914119b098e2e98
0a229e139a9ed01a469e518e6f2688ac/911
36ebe0ca3237002acb12e1474a3859bde0ac84b419ec4ae373e63363ebef731c/1/76a914119b098e2e98
0a229e139a9ed01a469e518e6f2688ac/100000
fd87f9adebb17f4ebb1673da76ff48ad29e64b7afa02fda0f2c14e43d220fe24/0/76a914119b098e2e98
0a229e139a9ed01a469e518e6f2688ac/1
dfdf0b375a987f17056e5e919ee6eadd87dad36c09c4016d4a03cea15e5c05e3/1/76a914119b098e2e98
0a229e139a9ed01a469e518e6f2688ac/1337
cb2679bfd0a557b2dc0d8a6116822f3fcbe281ca3f3e18d3855aa7ea378fa373/0/76a914119b098e2e98
0a229e139a9ed01a469e518e6f2688ac/1337
d6be34ccf6edddc3cf69842dce99fe503bf632ba2c2adb0f95c63f6706ae0c52/1/76a914119b098e2e98
0a229e139a9ed01a469e518e6f2688ac/2000000
Ê
0e3e2357e806b6cdb1f70b54c3a3a17b6714ee1f0e68bebb44a74b1efd512098/0/410496b538e853519c
726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52da7589379515d4e0a604f8141781e622947
21166bf621e73a82cbf2342c858eeac/5000000000
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Appendix A: Opérateurs du langage de script
des transactions, Constantes et Symboles
Place une valeur sur la pilemontre les opérateurs qui placent les valeurs sur la pile.

Table 1. Place une valeur sur la pile

Symbole Valeur (hex) Description

OP_0 ou OP_FALSE 0x00 Un tableau vide est placé sur la
plie

1-75 0x01-0x4b Place les N octets suivants sur la
pile, avec N compris entre 1et 75
octets

OP_PUSHDATA1 0x4c Le prochain octet de script
contient N, place les N octets
suivants sur la pile

OP_PUSHDATA2 0x4d Les deux prochains octets de
script contiennent N, place les N
octets suivants sur la plie

OP_PUSHDATA4 0x4e Les quatres prochains octets de
script contiennent N, place les N
octets suivants sur la pile

OP_1NEGATE 0x4f Place la valeur "Ð1" sur la pile

OP_RESERVED 0x50 Halte - Transaction invalide à
moins dÕêtre trouvée dans un
clause OP_IF non exécutée

OP_1 ou OP_TRUE 0x51 Place la valeur "1" sur la pile

OP_2 à OP_16 0x52 to 0x60 Pour OP_N, place la valeur "N"
sur la pile. Par exemple., OP_2
place la valeur "2"

Contrôle de flux conditionnel montre les opérateurs de contrôle de flux conditionnels.

Table 2. Contrôle de flux conditionnel

Symbole Valeur (hex) Description

OP_NOP 0x61 Ne fait rien

OP_VER 0x62 Halte - Transaction invalide à
moins dÕêtre trouvée dans un
clause OP_IF non exécutée
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Symbole Valeur (hex) Description

OP_IF 0x63 Exécute les commandes
suivantes si la valeur du haut de
la pile est différente de 0

OP_NOTIF 0x64 Exécute les commandes
suivantes si la valeur du haut de
la pile est égale à 0

OP_VERIF 0x65 Halte - Transaction invalide

OP_VERNOTIF 0x66 Halte - Transaction invalide

OP_ELSE 0x67 Exécute la commande si les
commande précédentes nÕont
pas été exécutées

OP_ENDIF 0x68 Mar la fin des blocs OP_IF,
OP_NOTIF, OP_ELSE

OP_VERIFY 0x69 Vérifie le haut de la pile, arrête
et invalide la transaction si elle
est différente de TRUE

OP_RETURN 0x6a Arrête et invalide la transaction

Opération de pile montre les opérateurs utilisés pour manipuler la pile.

Table 3. Opération de pile

Symbole Valeur (hex) Description

OP_TOALTSTACK 0x6b Retire lÕobjet du haut de la pile
et le place dans une pile
alternative

OP_FROMALTSTACK 0x6c Retire lÕobjet du haut de la pile
alternative et la place dans la
pile

OP_2DROP 0x6d Retire deux objets de la pile

OP_2DUP 0x6e Duplique les deux objets du haut
de la pile

OP_3DUP 0x6f Duplique les trois objets du haut
de la pile

OP_2OVER 0x70 Copie le troisième et le
quatirème objet de la pile vers le
haut de la pile
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Symbole Valeur (hex) Description

OP_2ROT 0x71 Copie le cinquième et le sixième
objet de la pile vers le haut de la
pile

OP_2SWAP 0x72 Echange les deux premières
paires dÕobjet dans la pile

OP_IFDUP 0x73 Duplique lÕobjet du haut de la
pile si il est différent de 0

OP_DEPTH 0x74 Compte les objets dans la pile et
retourne le résultat

OP_DROP 0x75 Retire lÕobjet du haut de la pile

OP_DUP 0x76 Duplique lÕobjet du haut de la
pile

OP_NIP 0x77 Retire le deuxième objet de la
pile

OP_OVER 0x78 Copie le deuxième objet de la
pile et le place en haut

OP_PICK 0x79 Retire la valeur N du haut, et la
copie N fois lÕobjet en haut de la
pile

OP_ROLL 0x7a Retire la valeur N du haut, et la
déplace N fois vers le haut de la
pile

OP_ROT 0x7b effectue une rotation des trois
premières valeurs de la pile

OP_SWAP 0x7c Echange les trois objets du haut
de la pile

OP_TUCK 0x7d Copie la valeur du haut de la pile
et lÕinsère entre la première et la
deuxième valeur de la pile.

Opérations sur les chaines de caractères montre les opérateurs de chaîne de caractères.

Table 4. Opérations sur les chaines de caractères

Symbole Valeur (hex) Description

OP_CAT 0x7e Désactivé (concatène les deux
objets du haut)
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Symbole Valeur (hex) Description

OP_SUBSTR 0x7f Désactivé (retourne une sous-
chaîne)

OP_LEFT 0x80 Désactivé (retourne la sous-
chaine de gauche)

OP_RIGHT 0x81 Désactivé (retourne la sous-
chaine de droite)

OP_SIZE 0x82 Calcule la longueur de la chaine
de caractères du haut de la pile
et retourne le résultat

Arithmétique binaire et conditions montre les opérateurs de logique booléenne et dÕarithmétique
binaire.

Table 5. Arithmétique binaire et conditions

Symbole Valeur (hex) Description

OP_INVERT 0x83 Désactivé (inverse les bits de la
valeur du haut de la pile)

OP_AND 0x84 Désactivé (effectue un AND
booléen des deux premières
valeur de la pile)

OP_OR 0x85 Désactivé (effectue un OR
booléen des deux premières
valeur de la pile))

OP_XOR 0x86 Désactivé (effectue un XOR
booléen des deux premières
valeur de la pile)

OP_EQUAL 0x87 Place TRUE (1) si les deux valeur
du haut sont exactement égales,
place FALSE (0) autrement

OP_EQUALVERIFY 0x88 Pareil que OP_EQUAL, mais
exécute OP_VERIFY ensuite pour
arrêter lÕexécution si le résultat
est différent de TRUE

OP_RESERVED1 0x89 Arrêt - Transaction invalide à
moins que cet opération ne soit
placée dans une clause OP_IF
non exécutée
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Symbole Valeur (hex) Description

OP_RESERVED2 0x8a Arrêt - Transaction invalide à
moins que cet opération ne soit
placée dans une clause OP_IF
non exécutée

Opérateurs numériques shows numeric (arithmetic) operators.

Table 6. Opérateurs numériques

Symbole Valeur (hex) Description

OP_1ADD 0x8b Add 1 to the top item

OP_1SUB 0x8c Subtract 1 from the top item

OP_2MUL 0x8d Disabled (multiply top item by 2)

OP_2DIV 0x8e Disabled (divide top item by 2)

OP_NEGATE 0x8f Flip the sign of top item

OP_ABS 0x90 Change the sign of the top item
to positive

OP_NOT 0x91 If top item is 0 or 1 Boolean flip
it, otherwise return 0

OP_0NOTEQUAL 0x92 If top item is 0 return 0,
otherwise return 1

OP_ADD 0x93 Pop top two items, add them and
push result

OP_SUB 0x94 Pop top two items, subtract first
from second, push result

OP_MUL 0x95 Disabled (multiply top two
items)

OP_DIV 0x96 Disabled (divide second item by
first item)

OP_MOD 0x97 Disabled (remainder divide
second item by first item)

OP_LSHIFT 0x98 Disabled (shift second item left
by first item number of bits)

OP_RSHIFT 0x99 Disabled (shift second item right
by first item number of bits)

OP_BOOLAND 0x9a Boolean AND of top two items

5



Symbole Valeur (hex) Description

OP_BOOLOR 0x9b Boolean OR of top two items

OP_NUMEQUAL 0x9c Return TRUE if top two items are
equal numbers

OP_NUMEQUALVERIFY 0x9d Same as NUMEQUAL, then
OP_VERIFY to halt if not TRUE

OP_NUMNOTEQUAL 0x9e Return TRUE if top two items are
not equal numbers

OP_LESSTHAN 0x9f Return TRUE if second item is
less than top item

OP_GREATERTHAN 0xa0 Return TRUE if second item is
greater than top item

OP_LESSTHANOREQUAL 0xa1 Return TRUE if second item is
less than or equal to top item

OP_GREATERTHANOREQUAL 0xa2 Return TRUE if second item is
great than or equal to top item

OP_MIN 0xa3 Return the smaller of the two
top items

OP_MAX 0xa4 Return the larger of the two top
items

OP_WITHIN 0xa5 Return TRUE if the third item is
between the second item (or
equal) and first item

Opérations cryptographiques et de hashage shows cryptographic function operators.

Table 7. Opérations cryptographiques et de hashage

Symbole Valeur (hex) Description

OP_RIPEMD160 0xa6 Return RIPEMD160 hash of top
item

OP_SHA1 0xa7 Return SHA1 hash of top item

OP_SHA256 0xa8 Return SHA256 hash of top item

OP_HASH160 0xa9 Return RIPEMD160(SHA256(x))
hash of top item

OP_HASH256 0xaa Return SHA256(SHA256(x)) hash
of top item
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Symbole Valeur (hex) Description

OP_CODESEPARATOR 0xab Mark the beginning of signature-
checked data

OP_CHECKSIG 0xac Pop a public key and signature
and validate the signature for
the transactionÕs hashed data,
return TRUE if matching

OP_CHECKSIGVERIFY 0xad Same as CHECKSIG, then
OP_VERIFY to halt if not TRUE

OP_CHECKMULTISIG 0xae Run CHECKSIG for each pair of
signature and public key
provided. All must match. Bug in
implementation pops an extra
value, prefix with OP_NOP as
workaround

OP_CHECKMULTISIGVERIFY 0xaf Same as CHECKMULTISIG, then
OP_VERIFY to halt if not TRUE

Non-operators shows nonoperator symbols

Table 8. Non-operators

Symbole Valeur (hex) Description

OP_NOP1-OP_NOP10 0xb0-0xb9 Does nothing, ignored

Reserved OP codes for internal use by the parser shows operator codes reserved for use by the internal
script parser.

Table 9. Reserved OP codes for internal use by the parser

Symbole Valeur (hex) Description

OP_SMALLDATA 0xf9 Represents small data field

OP_SMALLINTEGER 0xfa Represents small integer data
field

OP_PUBKEYS 0xfb Represents public key fields

OP_PUBKEYHASH 0xfd Represents a public key hash
field

OP_PUBKEY 0xfe Represents a public key field

OP_INVALIDOPCODE 0xff Represents any OP code not
currently assigned
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